
Functional Pearl: A Smart View on Datatypes

Mauro Jaskelioff Exequiel Rivas
CIFASIS-CONICET, Argentina

Universidad Nacional de Rosario, Argentina
jaskelioff@cifasis-conicet.gov.ar rivas@cifasis-conicet.gov.ar

Abstract
Left-nested list concatenations, left-nested binds on the free monad,
and left-nested choices in many non-determinism monads have
an algorithmically bad performance. Can we solve this problem
without losing the ability to pattern-match on the computation?
Surprisingly, there is a deceptively simple solution: use a smart
view to pattern-match on the datatype. We introduce the notion
of smart view and show how it solves the problem of slow left-
nested operations. In particular, we use the technique to obtain fast
and simple implementations of lists, of free monads, and of two
non-determinism monads.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications – Applicative (func-
tional) languages; E.1 [Data Structures]: Lists, stacks, and queues

Keywords List, Monad, MonadPlus, Data Structure

1. Introduction
Lists are one of the most important data structures in functional
programming. However, the append operation (++) is inefficient,
as it is linear on the first argument. Therefore, in a left-nested
concatenation ((xs ++ ys) ++ zs) we are going to pay the price
of traversing xs twice. A typical example of such a situation is the
function reverse:

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

Unfolding the recursion, reverse [1, 2, 3, 4] amounts to

((([] ++ [4]) ++ [3]) ++ [2]) ++ [1].

Left-nested appends make this function quadratic on the length of
the input list.

Rather than rewriting the function reverse (which would only
solve the problem for this particular function) we want a new data
structure for lists that will make functions like reverse fast. More
precisely, we want a catenable list. That is, a data structure for lists
that has fast appends and fast pattern-matching.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’15, September 01 – 03, 2015, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3669-7/15/09. . . $15.00.
http://dx.doi.org/10.1145/2784731.2784743

The problem of optimising list concatenation is just one instance
of a more general problem which occurs in other settings, such as
libraries of effects based on free monads and implementations of
domain specific languages. In this article we present an extremely
simple technique for optimising selected operations using their al-
gebraic properties while keeping the efficiency of pattern-matching.
We achieve this by transforming a data structure into a new one,
which is inspected using a smart view. We illustrate the technique
with several examples: catenable lists (Section 2), free monads
(Section 3), and two different implementations of non-determinism
monads (Section 4).

The search of efficient list implementations and the generalisa-
tion of the ideas to other datatypes has a long history. We review
related work in Section 5, and run some benchmarks in Section 6
that show that data structures with smart views are quite fast indeed.

We use Haskell to explain the ideas, but lazyness does not play
any significant role. In fact, we also implement and benchmark smart
views for lists in the strict language ML.

2. Catenable Lists
In this section we take the basic datatype of lists and transform it
into a fast implementation of catenable lists.

2.1 Basic Lists
We define our own datatype of lists, rather than reuse the one
predefined in Haskell, in order to be able to alter it.

data List a = Nil
| Cons a (List a)

With this datatype we have constant time construction of the empty
list (Nil), consing of an element (Cons), and pattern-matching.
However, list concatenation is expensive as it is linear in its first
argument:

(++) :: List a → List a → List a
Nil ++ ys = ys
Cons x xs ++ ys = Cons x (xs ++ ys)

We are interested in obtaining a representation for lists with a fast
implementation of concatenation. However, while some functions
such as

wrap :: a → List a
wrap x = Cons x Nil

only use constructors, the most common way of defining functions
on lists is by pattern-matching:

reverse :: List a → List a
reverse Nil = Nil
reverse (Cons x xs) = reverse xs ++ wrap x

Therefore, we do not want to lose the ability to pattern-match
efficiently.

2.2 A Smart View on Lists
In order to get lists with fast concatenation, we add a constructor
(:++) that represents this operation:

data List a = Nil
| Cons a (List a)
| List a :++ List a

Now concatenation has become cheap as it is simply the application
of the constructor (:++). In order to be able to define functions by
pattern-matching as before, we define a view [8]:

data ListView a = NilV | ConsV a (List a)

Given a function viewL ::List a → ListView a , we can define
reverse as:

reverse xs = case viewL xs of
NilV → Nil
ConsV x xs → reverse xs :++ wrap x

In general, doing pattern matching in terms of cases is not entirely
satisfactory because cases do not nest as elegantly as left-hand-side
patterns. Nevertheless, the GHC extensions ViewPatterns and
PatternSynonyms add syntactic sugar that allows us to pattern-
match on the left-hand side. Using these extensions we can make the
definition of reverse look almost like the original. First, we declare
a pattern synonym for each constructor:

pattern Nil ← (viewL → NilV)
pattern Cons x xs ← (viewL → ConsV x xs)

The pattern synonyms state that pattern matching on Nil is the same
as applying viewL and pattern matching the result on NilV , and that
pattern matching on Cons x xs is the same as applying viewL and
pattern matching the result on ConsV x xs .

After sugaring, the function reverse is simply:

reverse Nil = Nil
reverse (Cons x xs) = reverse xs :++ wrap x

The only missing piece, the definition of viewL, is straightforward.

viewL :: List a → ListView a
viewL Nil = NilV
viewL (Cons x xs) = ConsV x xs
viewL (Nil :++ ys) = viewL ys
viewL (Cons x xs :++ ys) = ConsV x (xs :++ ys)

As opposed to basic lists, the computation of concatenations happens
when we inspect a list with viewL, rather than when we construct
it. Note that the last two equations of viewL, which match on :++,
mimic the definition of ++ for basic lists.

In this implementation, concatenation is cheap. Unfortunately,
views are expensive. After applying reverse to the list

Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

we get the following tree:

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4]

Applying viewL in order to get the head and tail is linear in the
length of the list, as it requires traversing the left-spine.

data List a = Nil
| Cons a (List a)
| List a :++ List a

viewL :: List a → ListView a
viewL Nil = NilV
viewL (Cons x xs) = ConsV x xs
viewL ((xs :++ ys) :++ zs) = viewL (xs :++ (ys :++ zs))
viewL (Nil :++ ys) = viewL ys
viewL (Cons x xs :++ ys) = ConsV x (xs :++ ys)

Figure 1. Definition of lists with a smart view

viewL (

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4]) = ConsV 1 (

:++

:++

:++

Nil [2]

[3]

[4])

Therefore, the function reverse ◦ reverse is quadratic on the length
of the input list, as the first reverse necessarily yields left-nested
appends, and then each viewL in the second reverse needs to
traverse the whole list.

Our solution to this problem is to use a smart view: as we traverse
the structure in order to produce a view, we shift left-nested appends
into right-nested appends. The implementation of a smart view only
requires inserting one equation into the previous viewL definition:

viewL ((xs :++ ys) :++ zs) = viewL (xs :++ (ys :++ zs))

Figure 1 contains the complete definition of lists with a smart view.
Now reverse ◦ reverse is linear on the length of the list, as

we only pay once for the traversal of left-nested appends. This is
illustrated clearly by the following example: applying viewL to a
left-leaning list yields a right-leaning tail:

viewL (

:++

:++

:++

:++

Nil [1]

[2]

[3]

[4]) = ConsV 1 (

:++

Nil :++

[2] :++

[3] [4]

)

Note that internally Lists are not lists but trees. Several equations
that we expect to hold for lists do not hold for Lists. For example,
(xs :++ys):++zs is distinct from xs :++(ys :++zs) as they are distinct
trees. However, it is precisely the ability to make this distinction that
enables the optimisation provided by the extra equation in viewL.
Moreover, for programmes that only inspect Lists by using viewL,
Lists are indistinguishable from ordinary lists. Hence, Lists are
lists observationally.

A smart view modifies the structure when we inspect it. In that
sense, smart views are reminiscent of splay trees, with whom they
share many of their advantages and disadvantages. On the plus side,
they are fast and simple. On the minus side, they are efficient only
with respect to single-future amortised time: given a left-leaning list
xs , we are going to pay the price of pattern-matching xs every time
we execute viewL xs .

3. Efficient Free Monads
We generalise the idea of smart views on lists to other data structures
where operations are more efficient when associated in a particular

way. In this section we improve the slow bind operation of the free
monad with a smart view that keeps the free monad ability to do
monadic reflection efficiently.

3.1 Basic Free Monad
An important example of a data structure where the associativity
of an operation determines its efficiency is that of a general leaf-
labelled tree known as the free monad. Free monads are very useful
for representing abstract syntax trees, where operations of the
language are nodes in the tree and variables are labels in the leaves.
The bind of this monad implements simultaneous substitution, which
in this representation is given by grafting the trees, i.e. extending a
tree by replacing each leaf by a tree.

The basic implementation of a free monad is the following:

data Free f a = Var a
| Con (f (Free f a))

An element of Free f a consists of a tree with f -nodes and leaves
with a values. This datatype yields a monad for every functor f :

instance Functor f ⇒ Monad (Free f) where
return = Var
Var a >>= f = f a
Con t >>= f = Con (fmap (>>=f) t)

An important concern in a free monad implementation is the
efficiency of the bind operation. As with list concatenation, the bind
operation above is inefficient when left-nested, since it traverses the
tree until it gets to the leaves, and as a consequence, the evaluation
of the expression (t >>= f) >>= g will traverse t twice, due to the
left-nested binds.

3.2 A Smart View on Free Monads
The usual solution to the inefficiency of left-nested binds in the
free monad is to apply the codensity transformation [5, 15], but
this transformation does not allow for pattern-matching on the
constructors of the free monad without losing the efficiency gains.
In order to have both an efficient bind and an efficient view, we
apply the same recipe as for lists:

• We add a constructor for the bind operation.
• We define a view function that shifts binds to the right.

Figure 2 provides the full definition of a free monad with a smart
view. The differences with respect to the basic implementation of
the free monad are that a constructor :>>= is added and is used
to implement the bind of the monad, and that pattern-matching is
done using viewF . Once again, computation is performed when
inspecting rather than when constructing the tree. The cases in the
definition of viewF for the :>>= pattern mimic the definition of the
bind for the basic free monad, except for the additional equation
shifting left-nested binds to the right.

As it happened with the smart-view implementation of lists,
which was not a list internally, the type Free f is not a monad
internally. For instance, the associativity law of bind does not hold
for the declared instance. However, distinguishing the two manners
in which we can associate bind is precisely what we need in order
to shift binds to the right and make views efficient. By restricting
access to the internal representation with viewF , Free f is a monad
observationally.

4. Efficient Non-determinism Monads
Another structure where the associativity of an operation is impor-
tant is non-determinism monads. These monads not only need an
efficient bind, but also need an efficient choice operator. We analyse

data Free f x = Var x
| Con (f (Free f x))
| ∀a.(Free f a) :>>= (a → Free f x)

instance Monad (Free f) where
return = Var
(>>=) = (:>>=)

data FreeMonadView f a = VarV a | ConV (f (Free f a))

pattern Var a ← (viewF → VarV a)
pattern Con t ← (viewF → ConV t)

viewF (Var a) = VarV a
viewF (Con t) = ConV t
viewF ((m :>>= f) :>>= g) = viewF (m :>>= λx → f x :>>= g)
viewF (Var a :>>= f) = viewF (f a)
viewF (Con t :>>= f) = ConV (fmap (:>>=f) t)

Figure 2. Free monad with a smart view.

two different inefficient implementations and show how they can be
improved using a smart view.

4.1 Basic List Monad Transformer
The list monad transformer [6] is often used to model the combina-
tion of non-determinism and other effects. For every monad m , the
monad transformer yields a non-determinism monad ListT m . Its
definition is as follows:

newtype ListT m a = LT (m (Maybe (a,ListT m a)))

viewLT :: ListT m a → m (Maybe (a,ListT m a))
viewLT (LT x) = x

Its Monad instance states that ListT m is a monad for every
monad m . The bind operation is defined in terms of the mplus
operation, which is given below.

instance Monad m ⇒ Monad (ListT m) where
return x = LT (return (Just (x ,mzero)))
m >>= f = LT (viewLT m >>= λx → case x of

Nothing → return Nothing
Just (h, t)→ viewLT (f h ‘mplus‘ (t >>= f)))

The MonadTrans instance states that ListT is a monad trans-
former and has a monad morphism

lift ::Monad m ⇒ m a → ListT m a

lifting computations from the underlying monad into the trans-
formed monad.

instance MonadTrans ListT where
lift m = LT (m >>= λx → return (Just (x ,mzero)))

The list monad transformer implements two operations for non-
determinism, which are specified by the MonadPlus interface.

class Monad m ⇒ MonadPlus m where
mzero ::m a
mplus ::m a → m a → m a

The operation mplus chooses between two computations, and
mzero represents the empty choice. The corresponding implementa-
tions in ListT are as follows:

instance Monad m ⇒ MonadPlus (ListT m) where
mzero = LT (return Nothing)
m ‘mplus‘ n = LT (viewLT m >>= λx → case x of

Nothing → viewLT n
Just (h, t)→ return (Just (h, t ‘mplus‘ n)))

A monad which is an instance of MonadPlus and additionally,
implements the MonadLogic interface, supports operators for fair
disjunction, fair conjunction, conditionals, and pruning [7].

class MonadPlus m ⇒ MonadLogic m where
msplit ::m a → m (Maybe (a,m a))

The MonadLogic instance of ListT follows directly from the
viewLT operation and the fact that ListT is a monad transformer
(and therefore implements lift .)

instance Monad m ⇒ MonadLogic (ListT m) where
msplit x = lift (viewLT x)

The main problem with the basic list monad transformer is that
left-nested mplus operations are inefficient. We solve this problem
with a smart view.

4.2 A Smart View on the List Monad Transformer
In order to obtain a smart view on the list monad transformer, we
follow the same recipe as before. First, we add a constructor (:+)
corresponding to the mplus operation:

data ListT m a = LT (m (Maybe (a,ListT m a)))
| (ListT m a) :+ (ListT m a)

Next, we change the viewLT function so that it performs the
computation corresponding to mplus while shifting left-nested
operations to the right.

viewLT ::Monad m ⇒
ListT m a → m (Maybe (a,ListT m a))

viewLT (LT v) = v
viewLT ((m :+ n) :+ o) = viewLT (m :+ (n :+ o))
viewLT (m :+ n) = viewLT m >>= λx → case x of

Nothing → viewLT n
Just (h, t)→ return (Just (h, t ‘mplus‘ n))

Last, we change the MonadPlus instance so that it uses the newly
added constructor.

instance Monad m ⇒ MonadPlus (ListT m) where
mzero = LT (return Nothing)
mplus = (:+)

No more changes are needed! The Monad , MonadTrans , and
MonadLogic instances are exactly the same as before. With a few
simple changes, we have obtained a list monad transformer with
efficient mplus and reflection.

4.3 Free MonadPlus
The second instance of a non-determinism monad that we are
going to analyse is that of the free MonadPlus . In Section 3,
we showed how the free monad constructs a monad for every
functor. Analogously, the free MonadPlus construction yields a
MonadPlus for every functor.

The free MonadPlus is given by the following datatype.

data FMP f x = FNil
| ConsV x (FMP f x)
| ConsF (f (FMP f x)) (FMP f x)

Its Monad instance is the following:

instance Functor f ⇒ Monad (FMP f) where
return x = ConsV x FNil
FNil >>= f = FNil
(ConsV x v)>>= f = f x ‘mplus‘ (v >>= f)
(ConsF t v) >>= f = ConsF (fmap (>>=f) t) (v >>= f)

Whereas in the free monad we have a choice of a Var or a Con , in
the free MonadPlus we have a list of those two choices. Elements

of the list are added by ConsV and ConsF , and FNil signals the
empty list. The bind operation is applied to each element of the list.
The corresponding MonadPlus instance is as follows:

instance MonadPlus (FMP f) where
mzero = FNil
FNil ‘mplus‘ y = y
(ConsV x y) ‘mplus‘ z = ConsV x (y ‘mplus‘ z)
(ConsF x y) ‘mplus‘ z = ConsF x (y ‘mplus‘ z)

The free monad plus suffers from two deficiencies: both left-
nested binds and left-nested mplus are inefficient. We solve both
problems with a smart view.

4.4 A Smart View on Free MonadPlus
In the smart view on the free MonadPlus , we need to solve the
associativity problem of two operations, and therefore we add two
constructors:

data FMP f x = FNil
| ConsV x (FMP f x)
| ConsF x (FMP f x)
| (FMP f x) :+ (FMP f x)
| ∀a.(FMP f a) :>>= (a → FMP f x)

The Monad and MonadPlus instances now simply use the
newly added constructors:

instance Monad (FMP f) where
return x = ConsV x FNil
(>>=) = (:>>=)

instance MonadPlus (FMP f) where
mzero = FNil
x ‘mplus‘ y = x :+ y

We define a view datatype for recovering reflection, along with
pattern synonyms that add syntactic sugar.

data ViewM f x = FNilV
| ConsVV x (FMP f x)
| ConsFV (f (FMP f x)) (FMP f x)

pattern FNil ← (viewM → FNilV)
pattern ConsV x xs ← (viewM → ConsVV x xs)
pattern ConsF t xs ← (viewM → ConsFV t xs)

As before, the view function turns left-associated operations into
right-associated operations. In this case it needs to do it for both
left-associated occurrences of :+ and left-associated occurrences
of :>>=. When the operations are not left-associated, then the view
performs the computations that were done in the original definitions
of mplus and bind.

viewM ::Monad f ⇒ FMP f x → ViewM f x
viewM FNil = FNilV
viewM (ConsV x xs) = ConsVV x xs
viewM (ConsF x xs) = ConsFV x xs
viewM ((x :+ y) :+ z) = viewM (x :+ (y :+ z))
viewM (FNil :+ y) = viewM y
viewM (ConsV x xs :+ y) = ConsVV x (xs :+ y)
viewM (ConsF x xs :+ y) = ConsFV x (xs :+ y)
viewM ((m :>>= f) :>>= g) =

viewM (m :>>= (λx → f x :>>= g))
viewM (FNil :>>= f) = FNilV
viewM (ConsV x xs :>>= f) = viewM (f x :+ (xs :>>= f))
viewM (ConsF t xs :>>= f) = ConsFV (fmap (:>>=f) t)

(xs :>>= f)

As this last example shows, the same procedure for optimising
one operation can be applied when we want to optimise two or more
operations.

5. Related Work
The search for lists with fast concatenation is a well-known problem
for which many solutions have been proposed in the past. Addition-
ally, some of the work has also been generalised to monads, and
at least in one case to MonadPlus . We discuss some of the most
relevant related works.

5.1 Modified Reduction Semantics
Sleep and Holmström [11] solve the problem of left-nested appends
by means of an interpreter for a lazy evaluator which regards the
++ operator as a constructor with a special reduction semantics.
This reduction semantics shifts left-nested appends into right-nested
appends, achieving the same effect as the smart view of Section 2.2.

This approach requires a lazy language, in contrast to smart
views which also work in a strict setting. The difference is that in
this approach the use of the associativity of append is commanded
by the evaluation of the list, whereas in the smart view approach it
is commanded by invocation of a view function.

There are other approaches that, like [11], solve the problem of
left-nested appends by modifying the semantics [14, 16]. In these
approaches, the whole program needs to be transformed or compiled
in a special way.

In the related work that follows a different approach is taken.
The starting point is an abstract data type, and therefore only the
abstract data type implementation needs to be changed.

5.2 Catenable Lists
The search for catenable lists has a long history. The most relevant
work for Haskell implementations are the catenable double-ended
queues in Okasaki’s book [9] and finger trees [3], which is the
data structure chosen in Haskell’s Data.Sequence package. Both
of these structures do more than just fast concatenation and views,
as they implement double-ended queues.

However, if one can do without the extra functionality and single
future amortised time is enough, lists with a smart view cannot be
beat for simplicity and speed (see Section 6).

The simplicity of structures with a smart view is an important fac-
tor when one wants to reproduce the optimisation in data structures
other than lists.

5.3 Continuation-passing Representations
Cayley lists (also known as difference lists or Hughes’ lists [4])
are a good way to speed up concatenations. It is a simple approach
which has been also applied to the optimisation of the bind in the
free monad through the codensity monad transformation [5, 15].
Moreover, it has been shown that the approach is an instance of
a generic Cayley representation for monoids, which means that it
can be applied to other structures such as applicative functors [10].
Continuation-based implementations have also been proposed for
non-determinism monad transformers [2, 7].

The main limitation of all these continuation-passing represen-
tations is that they lack support for pattern-matching. This means
that they will work well if all the computation can be performed
without inspecting the structure, and only in the end the results are
analysed. The benefits are lost if one needs to inspect the structure
in the middle of the computation.

5.4 Explicit Binds
Uustalu introduced an approach of “explicit binds” which is quite
close to ours [12]. In the explicit-bind approach, the operation that

one wants to optimise is introduced as a constructor in exactly the
same way that one does in the smart-view approach. However, as
opposed to the smart-view approach, the data structure is inspected
using a special fold operator that applies the selected operation in
the most efficient order. For example, for lists the fold operation
would be:

foldE :: (a → b → b)→ b → List a → b
foldE h e Nil = e
foldE h e (Cons x xs) = h x (foldE h e xs)
foldE h e (xs :++ ys) = foldE h (foldE h e ys) xs

The disadvantage of this approach is that one is required to
write functions in terms of folds, instead of using pattern-matching.
Uustalu also defines a primitive-recursion operator:

primrec :: (a → b → List a → b)→ b → List a → b
primrec h e Nil = e
primrec h e (Cons x xs) = h x (primrec h e xs) xs
primrec h e (xs :++ ys) = primrec h ′ (primrec h e ys) xs

where h ′ x a xs = h x a (xs :++ ys)

which in principle would allow us to define a view:

viewL = primrec (λx xs → ConsV x xs) NilV

However, this viewL is equivalent to our first, unoptimised imple-
mentation. That is, if we define reverse by pattern-matching on this
view, reverse ◦ reverse is quadratic.

The solution to this problem is to use a smart view in the
definition of primrec: we add another equation turning left-nested
appends into right-nested appends. Joining the two approaches
yields the following definition:

primrec′ h e Nil = e
primrec′ h e (Cons x xs) = h x (primrec′ h e xs) xs
primrec′ h e ((xs :++ ys) :++ zs)

= primrec′ h e (xs :++ (ys :++ zs))
primrec′ h e (xs :++ ys) = primrec′ h ′ (primrec′ h e ys) xs
where h ′ x a xs = h x a (xs :++ ys)

Therefore, one can use both approaches simultaneously. After
all, giving foldE and primrec′ access to the internal representation
cannot hurt. Perhaps surprisingly, the addition of these operations is
inconsequential. Our benchmarks show that functions implemented
using foldE perform as well as functions that use the following
foldr defined in terms of pattern-matching on viewL.

foldr :: (a → b → b)→ b → List a → b
foldr h e Nil = e
foldr h e (Cons x xs) = h (foldr h e xs)

5.5 Monadic Reflection
Van der Ploeg and Kiselyov [13] propose a data structure that solves
exactly the problem that we address with smart views: optimising
an operation such as bind in the free monad, or mplus for non-
determinism monads, without losing the ability to pattern-match
efficiently. The technique generalises an efficient data structure for
lists to monads by keeping a type aligned sequence of monadic
binds. Because of the type aligned sequences, the implementation is
much more complex than the smart view implementation. Moreover,
benchmarks show that smart views are noticeably faster.

5.6 Operational Monad
The smart view on the free monad shown in Section 3 is very similar
to the implementation of the free monad in the operational
package. Note that this is quite a different implementation from
the one described by its author in a tutorial article [1]. The package

also provides an implementation of a non-determinism monad, but
this implementation does not use smart views and suffers from
quadratic time on left-nested applications of mplus .

6. Benchmarks
We provide some micro-benchmarks in order to give an idea of what
performance can be expected from the use of smart views.

All benchmarks where done on an Intel Core i5-3330 CPU, with
16GB of RAM. All programs were compiled using GHC 7.8.2 with
optimisation turned on. For obtaining the running times we used
the criterion package, which executes each test several times in
order to account for accidental differences in CPU load.

In each benchmark, we compare implementations with a linear
asymptotic complexity, leaving out implementations which are
quadratic for that test. We express the results as relative time with
respect to the fastest implementation.

The source code for the benchmarks can be downloaded from
http://www.fceia.unr.edu.ar/~mauro/pubs/smartviews.

6.1 Lists
We compare lists with a smart view (Section 2.2) against Okasaki’s
catenable double-ended queues [9] and Finger Trees [3]. We bench-
marked the running time of the function reverse ◦ reverse which
mixes pattern-matching and concatenation, for input of different
lengths. The implementation using smart views is the fastest, with
catenable double-ended queues being 4.6 times slower, and finger
trees being 1.5 times slower.

Both catenable deques and finger trees implement efficiently the
removal of the last element, an operation which is inefficient for lists
with a smart view. However, if pattern-matching and concatenation
is all that is needed, the smart-view implementation seems to be the
fastest.

We also compare two implementations of fold for lists with a
smart view. One is the fold with access to the internal representation,
as presented by Uustalu [12] (see Section 5.4), and the other is foldr
written using views.

The benchmark compares the performance of summing a list
of integers by writing sum as a fold. Both implementations show
very close running times (difference less than 2%), and therefore we
conclude that we would not gain much by adding a fold with access
to the internal representation.

6.2 Free Monads
We compare the following implementations of free monads:

• Free monad with a smart view (Section 3.2).
• Codensity: Codensity monad on a free monad [5, 15].
• Ref: Free monad using the “reflection without remorse” tech-

nique [13].
• Oper: Free monad from the operational package.

While all of these implementations deal efficiently with left-
nested binds, the codensity monad is the only one that does not have
an efficient reflection mechanism.

We measure the running time of the function fullTree [15].
This is a toy example which constructs a binary tree using left-
nested binds, which then is consumed with a zig-zag traversal. This
benchmark does not use reflection, so we expected the codensity
transformation to be the fastest. However, even in this case, the
smart-view implementation is the fastest, , with Codensity being
1.2 times slower, Oper being 1.5 times slower, and Ref being 2.9
times slower.

Next, we measure the running time of the function interleave,
which interleaves two monadic computations making heavy use of

reflection (and therefore we left out the codensity transformation).
Again, the free monad with a smart view is the fastest, with Oper
being 1.2 time slower, and Ref being 2.2 times slower.

6.3 Non-determinism Monads
Last, we test implementations of non-determinism monads with
three benchmarks. The implementations we compare are:

• List monad transformer with a smart view (Section 4.2).
• Free MonadPlus with a smart view (Section 4.4).
• Ref: List monad transformer using “reflection without re-

morse” [13].
• LogicT: Backtracking monad transformer based on continua-

tions [7]. This implementation deals with left-nested mplus
efficiently, but poorly with reflection.

• ListT: Basic list monad transformer.

In the first benchmark, we compare the running times of different
implementations when observing all results in left-nested applica-
tions of mplus . The unoptimised list transformer is not included
since it takes quadratic time. Surprisingly, the two implementations
that use smart views even best the continuation-based implemen-
tation. More concretely, in this test the fastest implementation is
the Free MonadPlus with a smart view, followed by the list monad
transformer with a smart view (1.2 times slower), then LogicT (1.4
times slower), and finally Ref (4.8 times slower). Note that this
is just a micro-benchmark. We still expect the continuation-based
implementation to be faster in real applications where reflection is
not needed.

In the second benchmark, we evaluate taking the first n results
from a computation. This test does use reflection, and therefore
LogicT takes quadratic time rather than linear, so it is not included
in the comparison. We do include the original list transformer ListT,
which, as expected, performs well in this test. The smart view free
monad plus is the fastest, followed by the basic list transformer (1.5
times slower), then the smart view list transformer (2 times slower),
and finally Ref (4.2 times slower).

In the third benchmark, we test the fair conjunction operation,
which uses reflection. Again, smart views have the advantage. The
smart view free MonadPlus is the fastest, with the smart view list
transformer being 1.5 times slower, and Ref being 2.7 times slower.
Compared with the “reflection without remorse” technique, smart
views obtain similar asymptotic complexity but, perhaps due to their
simplicity, much lower constants.

6.4 Smart Views in Strict Languages
The smart view technique also works in a strict setting. In order to
validate this claim, we have implemented the smart view for lists in
the strict functional language ML. As it was done in Section 6.1, we
tested the implementation with the function reverse ◦ reverse . As
expected, the benchmarks show that the function runs in linear time.
Moreover, when compared with an implementation of Okasaki’s
catenable deques the constant speedups are similar (catenable deques
are 4 times slower in this test). Also, we obtained results similar to
the Haskell case when running the benchmark that compares two
implementations of fold , with and without access to the internal
representation. Benchmarks were compiled using Moscow ML
compiler version 2.10.

7. Conclusion
We have shown a technique for optimising operations in a data
structure, while keeping efficient pattern-matching. We have shown
the technique by constructing efficient versions of catenable lists,
reflective free monads, and two implementations of reflective non-

determinism monads. The extension of the technique to other data
structures seems trivial.

In all of our examples we have optimised an operation by using
its associativity. However, the technique can be readily applied to
other algebraic properties. For example, in the free MonadPlus
example, it is trivial to add an equation that distributes bind over
mplus:

viewM ((x :+ y) :>>= f) = viewM ((x :>>= f) :+ (y :>>= f))

Smart views are an efficient solution with respect to single-future
amortised time, whose simplicity cannot be understated. In order to
optimise a datatype using its algebraic properties, it is a good idea
to have a smart view on it.

Acknowledgements
We would like to thank the anonymous referees for their helpful
feedback. This work was partially funded by Agencia Nacional de
Promoción Científica y Tecnológica (ANPCyT) PICT 2009-15.

References
[1] H. Apfelmus. The Operational Monad Tutorial. The Monad.Reader,

Issue 15, January 2010.
[2] R. Hinze. Deriving backtracking monad transformers. In Proceedings

of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’00, pages 186–197, New York, NY, USA, 2000.
ACM. ISBN 1-58113-202-6.

[3] R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. J. Funct. Program., 16(2):197–217, 2006.

[4] J. Hughes. A novel representation of lists and its application to the
function “reverse”. Information Processing Letters, 22(3):141–144,
1986.

[5] G. Hutton, M. Jaskelioff, and A. Gill. Factorising folds for faster
functions. Journal of Functional Programming, 20(Special Issue 3-4):
353–373, 2010.

[6] M. Jaskelioff and E. Moggi. Monad transformers as monoid
transformers. Theoretical Computer Science, 411(51-52):4441 –
4466, 2010.

[7] O. Kiselyov, C. Shan, D. P. Friedman, and A. Sabry. Backtracking,
interleaving, and terminating monad transformers: (functional pearl).
In O. Danvy and B. C. Pierce, editors, Proceedings of the 10th ACM
SIGPLAN International Conference on Functional Programming,
ICFP 2005, Tallinn, Estonia, September 26-28, 2005, pages 192–203.
ACM, 2005. ISBN 1-59593-064-7.

[8] C. Okasaki. Views for Standard ML. In SIGPLAN Workshop on ML,
pages 14–23, 1998.

[9] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, New York, NY, USA, 1998. ISBN 0-521-63124-6.

[10] E. Rivas and M. Jaskelioff. Notions of computation as monoids. CoRR,
abs/1406.4823, 2014. URL http://arxiv.org/abs/1406.4823.
Submitted to the Journal of Functional Programming.

[11] M. R. Sleep and S. Holmström. A short note concerning lazy reduction
rules for append. Software: Practice and Experience, 12(11):1082–
1084, 1982. ISSN 1097-024X.

[12] T. Uustalu. Explicit binds: Effortless efficiency with and without
trees. In T. Schrijvers and P. Thiemann, editors, Functional and Logic
Programming - 11th International Symposium, FLOPS 2012, Kobe,
Japan, May 23-25, volume 7294 of Lecture Notes in Computer Science,
pages 317–331. Springer, 2012. ISBN 978-3-642-29821-9.

[13] A. van der Ploeg and O. Kiselyov. Reflection without remorse: revealing
a hidden sequence to speed up monadic reflection. In W. Swierstra,
editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pages 133–144. ACM,
2014. ISBN 978-1-4503-3041-1.

[14] J. Voigtländer. Concatenate, reverse and map vanish for free. SIGPLAN
Not., 37(9):14–25, Sept. 2002. ISSN 0362-1340.

[15] J. Voigtländer. Asymptotic improvement of computations over free
monads. In Proceedings of the 9th International Conference on
Mathematics of Program Construction, MPC ’08, pages 388–403,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-70593-2.

[16] P. Wadler. The concatenate vanishes. Technical report, Department of
Computer Science, Glasgow University, December 1987.

