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Abstract

The incremental approach to modular monadic semantics constructs complex
monads by using monad transformers to add computational features to a pre-
existing monad. A complication of this approach is that the operations associ-
ated to the pre-existing monad need to be lifted to the new monad.

In a companion paper by Jaskelioff, the lifting problem has been addressed
in the setting of system Fω. Here, we recast and extend those results in a
category-theoretic setting. We abstract and generalize from monads to monoids
(in a monoidal category), and from monad transformers to monoid transformers.
The generalization brings more simplicity and clarity, and opens the way for
lifting of operations with applicability beyond monads.
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1. Introduction

Since monads have been proposed to model computational effects [31, 32],
they have proven to be extremely useful also to structure functional programs
[42, 41, 18]. In these applications monads come with operations to manipulate
the computational effects they model. For example, an exception monad may
come with operations for throwing an exception and for handling it, and a
state monad may come with operations for reading and updating the state.
Consequently, the structures one is really working with are monads and a set
of operations associated to them. The monadic approach to the denotational
semantics of a programming language, which has been adapted also to other
forms of programming language semantics based on interpreters [25] or compilers
[24], consists of three steps [33, 7]:
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• identify a metalanguage with computational types, to hide the interpreta-
tion of computational types and operations manipulating computations;

• define a translation of the programming language into the metalanguage;

• give a denotational semantics of the metalanguage, by interpreting com-
putational types and operations on computations using a monad and a set
of operations associated to it.

However, there is a caveat: when the programming language involves a mixture
of computational effects, the number of operations for manipulating compu-
tations grows, the monad needed to interpret computational types gets more
complex, and the semantics of operations associated to it gets more complex,
too. To tackle these issues one can adopt a modular approach, which provides
basic building blocks and constructs to build more complex blocks. Roughly
speaking, one can identify two modular approaches

• the incremental approach, taken in [25, 33, 7], uses unary constructs, called
monad transformers, which build complex monads by adding one compu-
tational feature to a pre-existing monad;

• the compositional approach, taken in [27, 15], uses binary constructs, called
monad combinations2, for combining two pre-existing monads.

Both approaches fall short in dealing with operations associated to monads.
This problem was identified in [25], which proposed a non-modular workaround,
namely to lift in an ad-hoc manner an operation through a monad transformer.
Therefore, the number of liftings grows like the product of the number of monad
transformers and operations involved. Alternatively, one may achieve modular-
ity by restricting the format of operations. For instance, algebraic operations in
the sense of [35] are easy to lift, but the monadic approach becomes of limited
applicability if all operations have to be algebraic.

The compositional approach fits with the algebraic view of computational
effects advocated in [35], and the combinations proposed in [15] give natural
ways to combine monads induced by algebraic theories and to lift algebraic
operations. However, some computational monads are not induced by algebraic
theories, and some operations on computations are not algebraic.

The incremental approach is popular among functional programmers, be-
cause monad transformers are easy to implement. However, there has been lim-
ited progress in addressing the lifting problem, until a new insight was brought
by [16, 17]. Jaskelioff gives a uniform way of lifting operations in a certain
class (which includes all the operations described in [25]) through any functo-
rial monad transformer. This lifting has been implemented in Haskell [16] and
studied in the setting of system Fω [17]. On algebraic operations it agrees with
the straigthforward lifting, and it is compatible with most of the ad-hoc liftings
found in the literature or in Haskell’s libraries.

2In the context of [15] it is more appropriate to call them theory combinations.
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Lifting Theorems and their applicability
Assumptions on operation op and transformer T for lifting op through T

op T Lifting theorem
algebraic basic Thm 3.4 (applies more generally to monoid maps)
first-order functorial Thm 5.5 for monoidal category with exponentials
first-order monoidal Thm 5.2 (applies to a more general form of op)

Figure 1: Applicability of Lifting Theorems

Contributions. Our main contribution is to develop a theory of monoid trans-
formers and lifting of operations in a categorical setting, that gener-
alises, clarifies, and extends the current theory of monad transformers [25, 33,
7, 17]. Category theory is known for its ability to abstract and generalize. We
make good use of it, by developing a theory of lifting for monoid transformers,
where monoids are taken in an unspecified monoidal category.

By a suitable choice of monoidal category, the theory specializes to monads,
strong monads, finitary monads aka algebraic theories, and monads realizable
in a typed or untyped calculus (such as system Fω or partial combinatory
logic). Also other structures generalizing strong monads (such as arrows [14]
and Freyd’s categories [39]) are monoids in suitable monoidal categories [13, 2].
Therefore, the theory may have a wider applicability.

Note for Readers. We assume a modest knowledge of category theory. The
notions relevant to the paper, but outside the scope of an introductory text book,
are recalled in Section 2. Further information can be found in more advanced
text books such as [28, 4, 8, 5]. Each section includes several examples, some
are not self-contained, but they are not needed to understand the main results.
A reader may skip the examples at first, to get more directly to the lifting
theorems, and then use Fig 2 to select the examples of interest.

Summary. Section 2 introduces monoidal categories (an internal language for
monoidal categories) and notions, such as exponentials and monoids, definable
in the setting of any monoidal category. Section 3 introduces a taxonomy of op-
erations associated to a monoid, and gives the most general formulation of the
lifting problem, namely what it means to lift an operation along a monoid mor-
phism (Theorem 3.4 shows that lifting of algebraic operations is always possible).
Section 4 introduces a taxonomy of monoid transformers and gives examples of
strong monad transformers clarifying where they fit in the taxonomy. Section 5
provides more lifting results for monoid transformers (Theorem 5.5 and 5.2).
Section 6 concludes with some considerations on related and future work.

Fig 1 says when the lifting theorems are applicable, while Fig 2 summarizes
the examples given in the paper of operations op associated to monads and
monad transformers T . To assess the usefulness of the lifting theorems, use
Fig 1 to identify for which pairs (op, T ) from Fig 2 “op lifts through T”. For
instance, “callcc lifts through any T”, because callcc is algebraic (Fig 2).
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Taxonomy of operations op associated to a monad M
op algebraic =⇒ op first-order (see Def 3.1)

Operation opX : A(MX) - MX for M of arity A type
MX = RR

X

continuations (Example 3.8)
abortX : R - MX algebraic
callccX : (MX)(RMX) - MX algebraic
MX = XS environments (Example 3.9)
readX : (MX)S - MX algebraic
localX : SS ×MX - MX first-order
MX = (X × S)S side-effects (Example 3.10)
readX : (MX)S - MX algebraic
writeX : S ×MX - MX algebraic
MX = X ×W complexity (Example 3.11)
addX : MX ×W - MX algebraic
collectX : MX - M(X ×W ) none
MX = X + E exceptions (Example 3.12)
throwX : E - MX algebraic
handleX : MX × (MX)E) - MX first-order

Taxonomy of monad transformers T
T monoidal =⇒ T functorial =⇒ T covariant =⇒ T basic (see Def 4.1)

Transformer TMX type
MXS environments (Example 4.5) monoidal
M(X × S)S side-effects (Example 4.6) monoidal
M(X ×W ) complexity (Example 4.7) monoidal
µX ′.M(X + SX ′) S-stepsa (Example 4.8) functorial
µX ′.M(1 +X ×X ′) list (Example 4.9) covariant
MR(MRX) continuations (Example 4.10) basic

Monoidal categories Ê with additional properties
Monoidal category properties
C with finite products (Example 2.14) symmetric
profunctors (Example 2.16) none
endofunctors (Example 2.16) strict
strong endofunctors (Example 2.17) strict
finitary endofunctors (Example 2.18) strict, exponentials
expressible endofunctors in Fω (Example 2.19) strict
realizable endofunctors in pCA (Example 2.20) strict, exponentials
realizable endofunctors in Fω (Example 2.21) strict, exponentials

Figure 2: Overview of Examples

aBy a suitable choice of the endofunctor S the transformer T becomes TMX = M(X+E)
exceptions, TMX = µX′.M(X +X′) resumptions, and so on.
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2. Monoidal Categories

It is well-known [28] that monads on a category C correspond to monoids
in the (strict) monoidal category Endo(C) of endofunctors on C. A similar cor-
respondence holds when monads are replaced by strong monads on a cartesian
closed category C or by monads expressible in system Fω (or some other typed
calculus of adequate expressivity), provided Endo(C) is replaced with a suitable
(strict) monoidal category Ê . These observations suggest that a theory of monad
transformers can be viewed as an instance of a theory of monoid transformers
in the setting of a monoidal category Ê . There are two main advantages in
moving to this more abstract setting:

• simplicity: monoids (in a monoidal category Ê) are simpler than monads
(on a category C);

• generality: the theory has several instantiations, including different flavours
of monads, by choosing a different monoidal category Ê .

Readers already familiar with monoidal categories can browse through most of
this section, and look only at some examples in Section 2.3.

Definition 2.1 (Monoidal Category [28]). A monoidal category Ê is a tu-
ple (E ,⊗, I, α, λ, ρ), where

• E is a category, ⊗ : E × E - E is a bifunctor, I ∈ E is an object

• αa,b,c : a⊗ (b⊗ c) - (a⊗ b)⊗ c , λa : I⊗a - a , ρa : a⊗ I - a are
natural isomorphisms such that the diagrams (2.1) and (2.2) commute

a⊗ (b⊗ (c⊗ d))
α- (a⊗ b)⊗ (c⊗ d)

α- ((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d)

id⊗ α

?

α
- (a⊗ (b⊗ c))⊗ d

α⊗ id

6

(2.1)

a⊗ (I⊗ b)
α- (a⊗ I)⊗ b

a⊗ b

id⊗ λ

?
======= a⊗ b

ρ⊗ id

?

(2.2)

When the natural isomorphisms α, λ and ρ are identities, the diagrams neces-
sarily commute, and the monoidal category is called strict.

Definition 2.2 (Monoid). The category Mon(Ê) of monoids in a monoidal
category Ê is given by



6

objects are monoids M̂ = (M, e,m), i.e. I
e - M � m

M ⊗M in
E such that

(M ⊗M)⊗M
m⊗ id - M ⊗M

M ⊗ (M ⊗M)

α

6

id⊗m
- M ⊗M

m
- M

m

?

(2.3)

I⊗M
λ - M � ρ

M ⊗ I

M ⊗M

m

6

�
id
⊗
ee⊗

id -

(2.4)

arrows from M̂1 to M̂2 are arrows M1
f - M2 in E such that

I
e1 - M1

� m1
M1 ⊗M1

I

wwwwwwwwww
e2

- M2

f

?
�

m2

M2 ⊗M2

f ⊗ f

?

(2.5)

Identities and composition in Mon(Ê) are inherited from E.

The forgetful functor U : Mon(Ê) - E maps a monoid M̂ to M and an arrow
M̂1

f- M̂2 to M1
f- M2.

Definition 2.3 (Exponential). An exponential of b to a in Ê is an object ba

together with an arrow ev : ba ⊗ a - b satisfying the universal property

∀x ∈ E .∀f : x⊗ a - b.∃! Λf : x - ba such that

ba ⊗ a
ev - b

x⊗ a

Λf ⊗ id

6

f

-

(2.6)

Definition 2.4 (Monoidal Functor). Given two monoidal categories Ê and
Ê ′, a monoidal functor T̂ from Ê to Ê ′ is a tuple (T, φI, φ), where
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• T : E - E ′ is a functor

• φI : I′ - T I is an arrow, and φa,b : Ta⊗′ Tb - T (a⊗ b) is a natural
transformation such that

Ta⊗′ (Tb⊗′ Tc)
id⊗′ φ- Ta⊗′ T (b⊗ c)

φ- T (a⊗ (b⊗ c))

(Ta⊗′ Tb)⊗′ Tc

α′

?

φ⊗′ id
- T (a⊗ b)⊗′ Tc

φ
- T ((a⊗ b)⊗ c)

T (α)

?

(2.7)

I′ ⊗′ Ta
λ′ - Ta �

ρ′
Ta⊗′ I′

T I⊗′ Ta

φI ⊗′ id

?

φ
- T (I⊗ a)

T
λ

-

T (a⊗ I) �
φ

�

T
ρ

Ta⊗′ T I

id⊗′ φI

?

(2.8)

When the arrows φI and φa,b are identities, the monoidal functor is called strict,
and the commuting diagrams amount to say I′ = T I, Ta ⊗′ Tb = T (a ⊗ b),
α′ = T (α), λ′ = T (λ) and ρ′ = T (ρ).

Definition 2.5 (Monoidal Natural Transformation). Given the monoidal
functors T̂ and T̂ ′ from Ê to Ê ′, a monoidal natural transformation τ from T̂

to T̂ ′ is a natural transformation τ : T •- T ′ such that

I′ ========== I′

T I

φI

?

τI
- T ′I

φ′I

?

Ta⊗′ Tb
τa ⊗′ τb- T ′a⊗′ T ′b

T (a⊗ b)

φ

?

τa⊗b
- T ′(a⊗ b)

φ′

?

(2.9)

Theorem 2.6 (Extension). A monoidal functor T̂ : Ê - Ê ′ induces a func-
tor T : Mon(Ê) - Mon(Ê ′), and similarly a monoidal natural transformation
τ : T̂ •- T̂ ′ induces a natural transformation τ : T •- T ′ such that

TM̂ = I′
φI - ·

Te- TM �Tm · �
φ

TM ⊗′ TM (2.10)

Mon(Ê)
T-
⇓ τ
T ′
- Mon(Ê ′)

U - E ′ = Mon(Ê)
U - E

T -
⇓ τ
T ′
- E

′ (2.11)
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Proof. We prove that (M ′, e′,m′) =̂ TM̂ is a monoid in Ê ′, namely the analog
of diagrams (2.3) and (2.4) in Definition 2.2 commute.

(M ′ ⊗′M ′)⊗′M ′
φ⊗′ id - ·

Tm⊗′ T id- M ′ ⊗′M ′

M ′ ⊗′ (M ′ ⊗′M ′)

α′
6

(1) (2)

·

id⊗′ φ

?
φ - · Tα - ·

φ

?
T (m⊗ id) - ·

φ

?

(2) (3)

M ′ ⊗′M ′

T id⊗′ Tm

?

φ
- ·

T (id⊗m)

?

Tm
- M ′

Tm

?

1. by diagram (2.7) in Definition 2.4
2. by naturality of φ
3. by functoriality of T and diagram (2.3) in Definition 2.2.

I′ ⊗′M ′
φI ⊗′ id- T I⊗′M ′

Te⊗′ T id- M ′ ⊗′M ′ �
id⊗′ e′

M ′ ⊗′ I′

(2)

(1) ·

φ

?
T (e⊗ id) - ·

φ

?
(4)

(3)

M ′

λ′

?
=========== M ′

Tλ

?
============== M ′

Tm

?
=========== M ′

ρ′

?

1. by diagram (2.8) in Definition 2.4
2. by naturality of φ
3. by functoriality of T and diagram (2.4) in Definition 2.2
4. same justifications as above, but with λ replaced by ρ.



9

We prove that Tf : TM̂1
- TM̂2 in Mon(Ê ′), namely the analog of dia-

gram (2.5) in Definition 2.2 commutes, when f : M̂1
- M̂2 in Mon(Ê).

I′
φI - ·

Te1- TM1
�Tm1 · �

φ
TM1 ⊗′ TM1

(1) (1) (2)

I′

wwwwwwwwww
φI

- ·

wwwwwwwwwww
Te2

- TM2

Tf

?
�
Tm2

·

T (f ⊗ f)

?
�

φ
TM2 ⊗′ TM2

Tf ⊗ Tf

?

1. by functoriality of T and diagram (2.5) in Definition 2.2
2. by naturality of φ

We prove that τM : TM̂ - T ′M̂ in Mon(Ê ′), namely the analog of dia-
gram (2.5) in Definition 2.2 commutes, for any monoid M̂ in Mon(Ê).

I′
φI - ·

Te- TM �Tm · �
φ

TM ⊗′ TM

(1) (2) (2) (1)

I′

wwwwwwwwww
φ′I

- ·

τI

?

T ′e
- T ′M

τM

?
�
T ′m

·

τM⊗M

?
�

φ′
T ′M ⊗′ T ′M

τM ⊗ τM
?

1. by diagram (2.9) in Definition 2.5
2. by naturality of τ

�

2.1. Languages for Monoidal Categories
It is well-known (see [40, 22, 23]) that the simply typed λ-calculus can be

interpreted in any cartesian closed category C: types τ and type assignments
Γ are interpreted by objects, and well-formed terms Γ ` t : τ by arrows (from
the interpretation of Γ to the interpretation of τ). Conversely by extending
the simply typed λ-calculus with types and operations representing objects and
arrows of C, one can express diagrams in C as (sets of) well-formed equations
Γ ` t1 = t2 : τ , and by devising a suitable notion of theory, one can establish
an equivalence between a category of theories and a category of models.

In this section we introduce typed calculi for monoidal categories (with expo-
nentials). Our aims are pragmatic, i.e. to use these calculi to express definitions,
statements and proofs involving monoidal categories. In fact, expressing dia-
grams with equations may sometimes improve readability and simplify proofs.

Fig 3 and Fig 4 define the language for monoidal categories with exponen-
tials. The language is inspired by the natural deduction system for intuitionistic
non-commutative linear logic described in [38].
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Variables x ∈ X
Terms t ∈ E ::= x | op(t) | (t1, t2) | let (x1, x2) = t1 in t2 |

∗ | let ∗ = t1 in t2 | λx.t | t t
Base Types a ∈ B
Types τ ∈ T ::= a | τ1 ⊗ τ2 | I | τ τ12

Assignments Γ ∈ (X× T)∗ such that each x ∈ X occurs at most once in Γ

We write x : τ for the assignment consisting of the pair (x, τ), and Γ1,Γ2 for the
concatenation of two assignments. The concatenation Γ1,Γ2 of two assignments
fails to be an assignment, when a variable x occurs in both Γ1 and Γ2.
A term t is identified with its equivalence class modulo α-conversion. We use the
derived notation let p = t1 in t2, where p ::= x | ∗ | (p1, p2) is a linear pattern.

Figure 3: Syntax

var
x : τ ` x : τ

map
Γ ` t : τ1

Γ ` op(t) : τ2
op : τ1 → τ2

⊗.I

Γ1 ` t1 : τ1
Γ2 ` t2 : τ2

Γ1,Γ2 ` (t1, t2) : τ1 ⊗ τ2
⊗.E

Γ2 ` t1 : τ1 ⊗ τ2
Γ1, x1 : τ1, x2 : τ2,Γ3 ` t2 : τ

Γ1,Γ2,Γ3 ` let (x1, x2) = t1 in t2 : τ

I.I
` ∗ : I

I.E
Γ2 ` t1 : I Γ1,Γ3 ` t2 : τ
Γ1,Γ2,Γ3 ` let ∗ = t1 in t2 : τ

→.I
Γ, x : τ1 ` t : τ2

Γ ` λx : τ1.t : τ τ12

→.E
Γ1 ` t1 : τ τ12 Γ2 ` t2 : τ2

Γ1,Γ2 ` t1 t2 : τ2

The type system is for deriving typings of the form Γ ` t : τ , with Γ an
assignment. Therefore, each typing rule has an implicit side-condition requiring
that the concatenation of assignments in the conclusion must be an assignment.

Figure 4: Type System

let (x1, x2) = (t1, t2) in t
β.⊗- t[x1 : t1, x2 : t2]

let ∗ = ∗ in t
β.I- t

(λx : τ1.t2) t1
β.→- t2[x : t1]

t′[x : t] denotes substitution of x with t in t′ modulo α-conversion, namely
bound variables in t′ are renamed to avoid clashes with the free variables in t.
We denote with =⇒ the compatible closure of the reduction rules given above.

Figure 5: Reduction
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We say that a typing Γ ` t : τ is well-formed, when it is derivable from the
rules in Fig 4, and an equation Γ ` t1 = t2 : τ is well-formed , when the typings
Γ ` t1 : τ and Γ ` t2 : τ are well-formed. An interpretation [[−]] of the language
in a monoidal category Ê (with additional structure) is defined by induction

• [[τ ]] is an object of E defined by induction on the structure of the type τ ;

• [[Γ]] is an object of E defined by induction on the length of the assignment
Γ: the empty assignment is interpreted by I, and [[Γ, x : τ ]] =̂ [[Γ]]⊗ [[τ ]];

• [[Γ ` t : τ ]] is an arrow of E from [[Γ]] to [[τ ]] defined by induction on the
unique derivation of the well-formed typing Γ ` t : τ , e.g.

if [[Γi ` ti : τi]] = fi : [[Γi]] - [[τi]], then [[Γ1,Γ2 ` (t1, t2) : τ1 ⊗ τ2]] is

[[Γ1,Γ2]]
∼- [[Γ1]]⊗ [[Γ2]]

f1 ⊗ f2- [[τ1]]⊗ [[τ2]]

where [[Γ1,Γ2]]
∼- [[Γ1]] ⊗ [[Γ2]] is the unique isomorphism given by the

coherence result for monoidal categories (see [28]).

If Γ ` t1 = t2 : τ is a well-formed equation and [[−]]I is an interpretation of
the language, as outlined above, then we write Γ `I t1 = t2 : τ , when the
interpretations [[Γ ` ti : τ ]]I denote the same morphism.

Definition 2.7 (Monoid). We express as well-formed equations Definition 2.2
of monoid M̂ = (M, e,m) and monoid morphism f : M̂1

- M̂2

• The diagrams (2.3) and (2.4) are equivalent to the equations

x : M ` x · e = x : M (2.12)
x : M ` e · x = x : M (2.13)

x1, x2, x3 : M ` (x1 · x2) · x3 = x1 · (x2 · x3) : M (2.14)

where M is a base type, ope : I → M and opm : M ⊗ M → M are
operations, and we write e for ope(∗) and t1 · t2 for opm(t1, t2).

• The diagram (2.5) is equivalent to the equations

` f e1 = e2 : M2 (2.15)
x1, x2 : M1 ` f(x1 ·1 x2) = (f x1) ·2 (f x2) : M2 (2.16)

where Mi, ei and t1 ·i t2 are as above, and f : M1 →M2 is an operation.

The reduction rules of Fig 5 induce a reduction t1 =⇒ t2 (on terms modulo
α-conversion) with the following properties:

• subject reduction, i.e. Γ ` t1 : τ and t1 =⇒ t2 imply Γ ` t2 : τ

• confluence, i.e. t1 =⇒∗ t2 and t1 =⇒∗ t3 imply t2 =⇒∗ t4 and t3 =⇒∗ t4
for some t4
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• strong normalization, i.e. Γ ` t : τ implies exists n such that m ≤ n
whenever t =⇒m t′

• soundness, i.e. Γ ` t1 : τ and t1 =⇒ t2 imply Γ `I t1 = t2 : τ for any I3.

We write Eq0 for the set of well-formed Γ ` t1 = t2 : τ such that t1 =⇒ t2.
Given a set Eq of well-formed equations, we write Γ `Eq t1 = t2 : τ , when the
well-formed equation Γ ` t1 = t2 : τ is in the congruence induced by Eq ∪Eq0.

Notation 2.8. To prove Γ `Eq t = t′ : τ we give a stack of rewriting steps
C[ t1 ] by justification
C[ t2 ]

(from t down to t′), where C[−] is a context with

one hole and justification explains why t1 = t2 (more precisely Γ′ ` t1 = t2 : τ ′,
with Γ′ and τ ′ inferable from Γ, τ and C[−]). A justification could be

• reduction, when t1 =⇒∗ t0 and t2 =⇒∗ t0 for some term t0, or

• Γ′ ` eq : τ ′ in Eq, when t1 = t2 is a substitution instance of eq.

We suppress the underlining/overlining when the context is the hole. Proofs in
this style can be found in Example 2.11. �

2.2. Examples of Monoids
We give constructions of objects in Mon(Ê), which may require additional

assumptions on the monoidal category Ê . More examples of monoids, in the
form of strong monads, are given in Section 3.1.

Example 2.9. The initial monoid Î, is given by I
id- I �

λ
I⊗ I and is an

initial object in Mon(Ê). �

Example 2.10. When E has J-limits, i.e. limits for diagrams of shape J , then
Mon(Ê) has J-limits which are computed pointwise, therefore they are preserved
by the forgetful functor U . In particular, if E has a terminal object 1, then the
unique monoid structure 1̂ on 1 yields a terminal object in Mon(Ê). �

Example 2.11. When the exponential aa exists, the monoid Ka of endo-

morphisms on a is given by I
ia - aa �

ca
aa ⊗ aa where

ia : aa =̂ λx : a.x (2.17)
ca(g, f : aa) : aa =̂ λx : a.g (f x) (2.18)

Moreover, if M̂ = (M, e,m) is a monoid, then one has a monoid morphism
toM̂ : M̂ - KM given by

toM̂ (x : M) : MM =̂ λx′ : M.x · x′ (2.19)

3The reduction is incomplete, since there is a well-formed Γ ` t1 = t2 : τ that holds in any
interpretation (e.g. x : I ` (let ∗ = x in ∗) = x : I), but t1 and t2 have different normal forms.
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We show that Ka is a monoid, i.e. it satisfies the equations (2.12), (2.13) and
(2.14), Let Eq be the set containing only (η. →), i.e. the sound equation
x′ : aa ` (λx : a.x′ x) = x′ : aa (we drop the type a of bound variables)

• x′ : aa `Eq ca(x′, ia) = x′ : aa

ca(x, ia) by definition
λx.x′ ((λx.x) x) by reduction (β.→)
λx.x′ x by (η.→) in Eq
x′

• x′ : aa `Eq ca(ia, x′) = x′ : aa the proof is similar to the one above.

• x1, x2, x3 : aa `Eq ca(ca(x1, x2), x3) = ca(x1, ca(x2, x3)) : aa

ca(ca(x1, x2), x3) by definition
λx.(λx.x1 (x2 x)) (x3 x) by reduction (β.→)
λx.x1 ((λx.x2 (x3 x)) x) by definition
ca(x1, ca(x2, x3))

We show that toM̂ is a monoid map, i.e. it satisfies the equations (2.15) and
(2.16), when M̂ is a monoid. Let Eq be the set of equations saying that M̂ is a
monoid (we drop the type M of bound variables)

• `Eq toM̂ (e) = iM : MM

toM̂ (e) by definition
λx.e · x by (2.13) in Eq
λx.x by definition
iM

• x1, x2 : M `Eq toM̂ (x1 · x2) = cM (toM̂ (x1), toM̂ (x2)) : MM

toM̂ (x1 · x2) by definition
λx3.(x1 · x2) · x3 by (2.14) in Eq

λx3.x1 · (x2 · x3) by reduction (β.→)
λx3.(λx.x1 · x) ((λx.x2 · x) x3) by definition
cM (toM̂ (x1), toM̂ (x2))

�

Example 2.12. When the left-adjoint (−)∗ to U : Mon(Ê) - E exists, it
gives free monoids. There are several assumptions on Ê , which imply the
existence of free monoids. For instance (see [19, Page 68-69]):

1. if Ê has exponentials, E has binary coproducts, and for each a ∈ E the
initial algebra for the endofunctor I + a⊗− exists, then a∗ exists and its
carrier is given the carrier µx.I + a⊗ x of the initial algebra;
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2. if E has binary coproducts, for each a ∈ E the endofunctor −⊗a preserves
colimits, and for each a ∈ E the chain aβ defined by ordinal induction

a0 =̂ I aβ+1 =̂ I + a⊗ aβ aλ =̂ colim
β<λ

aβ (λ limit ordinal)

converges at some β, i.e. aβ = aβ+1, then a∗ exists and its carrier is aβ .

�

Example 2.13. Given a monoid M̂ = (M, e,m) in Ê , and a monic M ′ ⊂
i- M

in E , such that for some (unique) maps e′ and m′

I
e - M � m

M ⊗M

M ′

i

6

�
m′

e ′

-

M ′ ⊗M ′

i⊗ i
6

then M̂ ′ =̂ (M ′, e′,m′) is a monoid, called the sub-monoid of M̂ induced by
the monic i, and M̂ ′ ⊂

i- M̂ is a monoid monomorphism. The general definition
of quotient of a monoid M̂ is more involved. We give only concrete descriptions
of sub-monads and quotient monads in Set, i.e. sub-monoids and quotient
monoids in Endo(Set) of Example 2.16. Given a monad M̂ = (M,η,−∗) on Set
presented as a Kleisli triple (see [29, 32]):

• A sub-monad of M̂ is uniquely identified by

a family of subsets (SX ⊆ MX | X) such that ∀X.∀x ∈ X. ηX(x) ∈ SX
and ∀X,Y. ∀f : X - SY .∀x ∈ SX . g∗ x ∈ SY
where g = X

f- SY ⊂ - MY .

• A quotient monad of M̂ is uniquely identified by

a family of equivalence relations (RX ⊆ MX × MX | X) such that
∀X,Y. ∀f : X - RY .∀(x1, x2) ∈ RX . (g∗1 x1, g

∗
2 x2) ∈ RY where gi =

X
f- RY

πi- MY .

The class of sub-monads of M̂ (and similarly for quotient monads) has an obvi-
ous partial order (given by pointwise inclusion) which is closed w.r.t. arbitrary
meets (computed by pointwise intersection), namely (

∧
S∈S

S)X =
⋂
S∈S

SX .

Therefore, any family S = (SX ⊆MX | X) of subsets generates the smallest
sub-monad containing S, and any family R = (RX ⊆ MX × MX | X) of
relations generates the smallest quotient monad containing R. �
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2.3. Examples of Monoidal Categories
We give several examples of monoidal categories, and when possible we say

whether they have exponentials. The definition of monoidal category is self-
dual, i.e. there is a bijection between monoidal structures on E and on Eop.
Therefore, each example has a dual.

• A category with finite products (Example 2.14), like Set, is the most
obvious example of monoidal category.

• Example 2.15 defines several full sub-categories of a monoidal category.

• For monads, the category Endo(C) of endofunctors (Example 2.16) is
paradigmatic, and the other examples we give are variations on this.

• For strong monads, the appropriate variation on Endo(C) is the category
of strong endofunctors (Example 2.17),

• For algebraic theories [29] (and collection types [30]), an appropriate choice
is the category of finitary endofunctors (Example 2.18),

• The category of endofunctors expressible in Fω (Example 2.19) establishes
a formal link with [17], and is paradigmatic of syntactic examples based
on typed calculi, but it does not have exponentials.

• Realizability [26, 34] is a general technique to build models for rich type
structures on top of computationally expressive (untyped) applicative struc-
tures, Examples 2.20 and 2.21 define realizable endofunctors on a category
of partial equivalence relations on a partial combinatory algebra and a
second-order combinatory algebra, respectively.

Example 2.14. A category C with finite products (e.g. the category Set of
sets) forms a symmetric monoidal category (C,×, 1, α, λ, ρ), where × is a binary
product functor, 1 is a terminal, and the natural isomorphisms are uniquely
determined by the universal properties of products. In this monoidal category
exponentials (in the sense of Definition 2.3) correspond to the usual notion of
exponentials for a cartesian closed category. �

Example 2.15. Given a monoidal category Ê with J-colimits (similar results
hold for J-limits), we write ColimJ(Ê) for the full sub-category of E whose
objects a ∈ E preserve J-colimits, i.e. the functor a⊗− : E - E preserves
J-colimits. This sub-category inherits the monoidal structure from Ê .

If C is a category with J-colimits and Ê is the (strict) monoidal category of
endofunctors over C (see Example 2.16), then Ê has J-colimits and ColimJ(Ê)
is the category of endofunctors on C preserving J-colimits in C. Moreover, a
simple way to meet the convergence requirement in Example 2.12 is to work in
Colimω(Ê), where all chains aβ converge at ω. �
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Example 2.16. If C is a category, then the category Endo(C) of endofunctors
over C forms a strict monoidal category (Endo(C), ◦, Id), more precisely

objects are endofunctors F : C - C

arrows from F to G are natural transformations τ : F •- G

tensor G ◦ F is functor composition (G ◦ F )(−) =̂ G(F (−))

unit Id is the identity functor Id(−) =̂ −.

In Endo(C) an exponential GF is a right Kan extension of G along F , charac-
terized by a bijection from H

•- GF to H ◦ F •- G natural in H.
If C has J-colimits, i.e. colimits for diagrams of shape J , then so does

Endo(C), these J-colimits in Endo(C) are computed pointwise and are preserved
by the functors − ◦ F : Endo(C) - Endo(C) (similar results hold for limits).

Also the category of profunctors Cop×C - Set forms a monoidal cate-
gory (see [8]), and there is a monoidal functor from endofunctors to profunctors
mapping F to C(−1, F−2). �

Example 2.17. If Ĉ is a monoidal category, then the category Endo(Ĉ)s of
strong endofunctors over Ĉ forms a strict monoidal category, more precisely

objects are F̂ = (F, tF ) with F : C - C functor, tFa,b : a⊗Fb - F (a⊗ b)
natural transformation such that

I⊗ Fa
tF- F (I⊗ a)

Fa

F (λ)

?

λ

-

a⊗ (b⊗ Fc)
id⊗ tF- a⊗ F (b⊗ c)

tF- F (a⊗ (b⊗ c))

(a⊗ b)⊗ Fc

α

? tF - F ((a⊗ b)⊗ c)

F (α)

?

arrows from F̂ to Ĝ are natural transformations τ : F •- G such that

a⊗ Fb
id⊗ τ- a⊗Gb

F (a⊗ b)

tF

? τ- G(a⊗ b)

tG

?

tensor Ĝ ◦ F̂ is the pair (G ◦ F, t) with

ta,b =̂ a⊗G(Fb)
tG- G(a⊗ Fb)

G(tF )- G(F (a⊗ b))

unit Îd is the pair (Id, t) with ta,b =̂ ida⊗b.

Moreover, the forgetful functor U : Endo(Ĉ)s - Endo(C), mapping F̂ to F ,
is strict monoidal. Also the category Endo(Ĉ)m of monoidal endofunctors
forms a strict monoidal category. �
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Example 2.18. We define the category Endo(Set)f of finitary endofunctors
on Set. This category inherits the monoidal structure of Endo(Set), but unlike
Endo(Set) it has exponentials. These results generalize when Set is replaced by
a locally finitely presentable enriched category (see [20]). A finitary endofunctor
F on Set is determined by its action on finite sets (e.g. see [5]), we give two
equivalent characterizations

• F preserves filtered colimits;

• for any x ∈ FX, exists n finite, i : n - X and x′ ∈ Fn s.t. (Fi)x′ = x.

We write Endo(Set)f for the full sub-category of Endo(Set) whose objects are
finitary endofunctors.

The first characterization implies that Id is finitary, composition of finitary
endofunctors is finitary, and the colimit in Endo(Set) of a diagram in Endo(Set)f
is in Endo(Set)f . Therefore, Endo(Set)f inherits from Endo(Set) the monoidal
structure and colimits, and the inclusion of Endo(Set)f into Endo(Set) is a
strict monoidal functor, which creates and preserves colimits.

The second characterization implies that Endo(Set)f is equivalent to the
category of functors SetSetf , where Setf is the full small sub-category of Set
whose objects are finite cardinals (aka natural numbers). In one direction the
equivalence is given by restricting an endofunctor F to Setf (we denote this
restriction with Ff ), in the other direction it is given by the left Kan extension
along the inclusion J : Setf ⊂ - Set

LanJFf =

n∫
−n × (Ffn)

i.e. the coend (see [28, Ch 9 and 10]) of S : Setopf ×Setf - Endo(Set) where
S(m,n) =̂ −m × (Ffn). In fact, S factors through Endo(Set)f , as −m × A is
finitary when m ∈ Setf and A ∈ Set, thus the coend (which is a colimit) is
in Endo(Set)f , too. The monoidal structure on Endo(Set)f induces on SetSetf

the following tensor (with unit given by the inclusion functor J)

(H ⊗ F )a =̂

n∫
(Fa)n × (Hn)

i.e. the coend with parameter for S : Setf × Setopf × Setf - Set where
S(a,m, n) =̂ (Fa)m × (Hn). The exponential GF in SetSetf is given by

(GF )a =̂
∫
n

(Gn)(Fn)a

i.e. the end with parameter for T : Setf × Setopf × Setf - Set where
T (a,m, n) =̂ (Gn)(Fm)a

. To prove that GF is an exponential requires general
properties of ends and coends, which can be found in [28, Ch 9]. �
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Example 2.19. Consider system Fω with βη-equivalence (see [3, 12]). We
define the strict monoidal category ÊFω of endofunctors and natural transfor-
mations expressible in Fω (the construction make sense also for other typed
calculi). Most results in [17] can be recast as category-theoretic properties of
ÊFω. For convenience, we recall the syntax of Fω

kinds k ::= ∗ | k → k

type constructors U ::= X | U → U | ∀X : k. U | λX : k. U | U U
terms e ::= x | λx :U. e | e e | ΛX : k. e | eU

and introduce some notational conventions: we write eU for eU (polymorphic
instantiation) and we write definitions fX(x : A) =̂ t for f =̂ ΛX : ∗. λx :A. t.

objects are expressible endofunctors, i.e. pairs F̂ = (F,mapF ) with F : ∗ → ∗
closed type constructor and mapF : ∀X,Y : ∗. (X → Y ) → FX → FY
closed term such that the following βη-equivalences hold

mapFX,X(idX) = idFX : FX→FX

mapFX,Z (g ◦ f) = (mapFY,Z g) ◦ (mapFX,Y f) : FX→FZ

where, idX =̂ λx : X.x is the identity on X and g ◦ f =̂ λx : X. g (f x) is
the composition of g : Y → Z and f : X → Y

arrows from F̂ to Ĝ are expressible natural transformations, i.e. βη-equivalence
classes [τ ] of closed terms τ : ∀X : ∗. FX →GX such that the following
βη-equivalence holds

(mapGX,Y f) ◦ τA = τB ◦ (mapFX,Y f) : FX→GY

Identity on F̂ is the βη-equivalence class of ιF =̂ ΛX : ∗. λx :FX. x, and
composition of [σ] and [τ ] is [σ] ◦ [τ ] =̂ [ΛX : ∗. σX ◦ τX ].

tensor Ĝ◦F̂ is (G◦F,map) with mapX,Y (f : X → Y ) =̂ mapGFX,FY (mapFX,Y f).

unit is the pair (Id,map) with Id =̂ λX : ∗. X and mapA,B (f : A→ B) =̂ f .

ÊFω does not have exponentials, even in the weak sense. More specifically,
when Ĝ is the identity functor and F̂ is the constant functor FX = A (for some
closed type A), there are no natural transformations from Ĥ ◦F̂ to Ĝ, no matter
what is Ĥ. In fact, given τ : ∀X.H(FX)→GX, naturality of [τ ] means that
X,Y : ∗ f : X→Y, u : HA ` f(τX u) = τY u : Y is a βη-equivalence. However,
this is impossible, because the normal form of the lhs contains f free, while the
normal form of the rhs does not.

Due to the lack of weak exponentials, also some claims in [17] are false.
For instance, let M̂ and K̂ be the expressible functors such that MX =̂ X
and KX =̂ ∀Z : ∗. (X → Z) → Z, then from : ∀X : ∗.KX → MX given by
fromX(c : KX) =̂ cX(idX) is not a natural transformation from K̂ to M̂ (as
claimed in [17, Proposition 14]). In fact, naturality of from amount to say that
c : KX f : X → Y ` f(cX idX) = cY f : Y is a βη-equivalence, but this is
impossible, because the two terms are different βη-normal forms. �
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Example 2.20. Let (A, ·) be a partial combinatory algebra ( see e.g. [26]), i.e.
a set A with a partial operation · : A× A ⇀ A, we write a b for ·(a, b), and
two elements K 6= S such that Kx y = x, Sx y ↓, Sx y z ' x z (y z). The
category PA of partial equivalence relations over A is given by

objects are symmetric and transitive relations R ⊆ A×A (called PERs); A/R
denotes the set of R-equivalence classes, i.e. the set of subsets X ⊆ A
such that ∃x ∈ X ∧ (∀a ∈ A. a ∈ X ⇐⇒ aRx);

arrows from R1 to R2 are maps f : A/R1
- A/R2 with a realizer, i.e. an

r ∈ A such that ∀X ∈ A/R1.∀x ∈ X. r x ∈ f(X) (r `A f for short).

The category Endo(PA)r of realizable endofunctors and realizable natural
transformations is the sub-category of Endo(PA) such that

objects are endofunctors F : PA - PA with a realizer, i.e. an r ∈ A such
that a `A f implies r a `A F (f) for every a ∈ A and arrow f in PA.

arrows from F to G are natural transformations τ : F •- G with a realizer,
i.e. an r ∈ A such that r `A τR for every object R of PA.

Endo(PA)r inherits the (strict) monoidal structure of Endo(PA), because realiz-
able endofunctors and realizable natural transformations are closed w.r.t. iden-
tities and composition. Therefore the inclusion of Endo(PA)r into Endo(PA) is
a strict monoidal functor. Endo(PA)r, unlike Endo(PA), has exponentials. We
give a concrete description of an exponential ev : H ⊗ F - G for a pair
realizable of functors F and G:

• aH(R) b ⇐⇒ a and b are realizers for the same realizable natural trans-
formation τ : YR ⊗ F •- G, where YR is the realizable endofunctor −R
given by exponentiation to R in PA

• an arrow R
f- S in PA induces a realizable natural transformation

Y (f) : YS
•- YR such that Y (f)T =̂ T f . Therefore, when YR⊗F

τ- G

is realizable, also YS ⊗ F
Y (f)⊗ idF- YR ⊗ F

τ - G is. This induces
a function H(f) : A/H(R) - A/H(S), and by elementary considera-
tions one can give an a ∈ A such that a r `A H(f) whenever r `A f

ev : H⊗F •- G is given by evR([a]) =̂ τR(idFR), where τ : YFR⊗F •- G is
the natural transformation realized by a, thus ev is realized by the interpretation
of the combinatory term [x]x([y]y). �

Example 2.21. We define the strict monoidal category Endo(PFω)r of endo-
functors and natural transformations realizable in Fω. The definition is like that
of Endo(PA)r in Example 2.20, but the partial combinatory algebra (A, ·) is re-
placed by Fω (more generally, one could use a partial second-order combinatory
algebra [9]). Endo(PFω)r, like Endo(PA)r, has exponentials.

In the sequel we confuse βη-equivalences class with their elements, when it
is safe to do so, and use the following auxiliary notation:
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• T is the set of βη-equivalence classes of closed types A;

• E(A) is the set of βη-equivalence classes of closed terms e of type A ∈ T ;

• P (A) is the set of PERs on E(A); given R ∈ P (A) we denote with E(R)
the set of R-equivalence classes, i.e. the set of subsets X ⊆ E(A) such
that ∃e ∈ X ∧ (∀e′ ∈ E(A). e′ ∈ X ⇐⇒ e′Re).

The category PFω is given by

objects are pairs (A,R) with A ∈ T and R ∈ P (A);

arrows from (A1, R1) to (A2, R2) are f : E(R1) - E(R2) with a realizer
r ` f , i.e. r ∈ E(A1 → A2) such that ∀X ∈ E(R1).∀e ∈ X. r e ∈ f(X).

The category Endo(PFω)r of endofunctors and natural transformations realiz-
able in Fω is the sub-category of Endo(PFω) such that

objects are endofunctors F : PFω - PFω with a realizer F̂ ` F , i.e.
F̂ is a pair (F̄ ,mapF ) with F̄ : ∗ → ∗ closed type constructor (uniquely
determined by F modulo βη-equivalence) such that F (A,R) = (B,S)
implies B = F̄A and mapF ∈ E(∀X,Y : ∗. (X → Y ) → F̄X → F̄ Y ) such
that f : (A,R) - (B,S) in PFω and e ` f implies mapFA,B e ` F (f);

arrows from F to G are natural transformations τ : F •- G with a realizer
r ` τ , i.e. r ∈ E(∀X : ∗. F̄X→ḠX) such that rA ` τ(A,R) for any (A,R).

Endo(PFω)r inherits the (strict) monoidal structure of Endo(PFω), and the in-
clusion functor is strict monoidal. We show (by analogy with Example 2.20)
that Endo(PFω)r has an exponential ev : H ⊗ F - G for any F and G:

• H(A,R) =̂ (∀Z : ∗.(A→ F̄Z)→ ḠZ, S) with aS b ⇐⇒ a and b are
realizers for the same natural transformation τ : Y(A,R) ⊗ F

•- G,
where Y(A,R) is the realizable endofunctor −(A,R) given by exponentiation
to (A,R) in PFω

• as realizer for H we take (H̄,mapH) with H̄X =̂ ∀Z : ∗. (A→ F̄Z)→ ḠZ
and mapHX,Y (f : X → Y, c : H̄X) =̂ ΛZ : ∗.λk : Y → F̄Z.cZ(k ◦ f). In
particular, mapH determines the action of H of arrows in PFω

ev : H ⊗ F •- G is the natural transformation realized by the element r in
E(∀X.H̄(F̄X)→ḠX) given by rX(c : H̄(F̄X)) =̂ cX(idF̄X). �

3. Operations and Lifting

Given a monoidal category Ê , we introduce several classes of operations as-
sociated to a monoid in Ê , and define what it means to lift such operations along
a monoid morphism. In this section, we prove that lifting exists and is unique,
when restricting to algebraic operations. In the following section, we establish
lifting results for wider classes of operations.
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Definition 3.1 (Operations). Given a monoid M̂ = (M, e,m) and a functor
H : Mon(Ê) - E, an H-operation for M̂ is a map op : HM̂ - M in E.

A first-order operation of arity A ∈ E for M̂ is a map op : A⊗M - M ,
i.e. an H-operation for H(−) = A⊗U(−), and such op is called algebraic when

s : A, x1, x2 : M ` op(s, x1) · x2 = op(s, x1 · x2) : M (3.1)

Definition 3.2 (Lifting). Given an H-operation op : HM̂1
- M1 for M̂1

and a monoid map h : M̂1
- M̂2, an H-operation op : HM̂2

- M2 for
M̂2 is a lifting of op along h when

HM̂2
op - M2

HM̂1

Hh

6

op
- M1

Uh

6

(3.2)

Remark 3.3. Equation (3.1) is equivalent to

s : A, x : M ` op(s, x) = op(s, e) · x : M (3.3)

From this it is immediate to establish a bijective correspondence between alge-
braic operations op : A⊗M - M for M̂ and maps op′ : A - M

op′(s : A) : M =̂ op(s, e)
op(s : A, x : M) : M =̂ op′(s) · x

Diagram (3.2) is equivalent to the equation

s : A, x : M1 ` h(op(s, x)) = op(s, h(x)) : M2 (3.4)

when H(−) = A⊗ U(−). �

Theorem 3.4 (Unique algebraic lifting). Given h : M̂1
- M̂2 monoid

map and op : A⊗M1
- M1 algebraic for M̂1, let op] : A⊗M2

- M2 be

op](s : A, x : M2) : M2 =̂ h(op(s, e1)) ·2 x (3.5)

then op] is the unique lifting of op along h which is algebraic for M̂2.

Proof. By definition op] is algebraic for M̂2. Let Eq be the set of equations
saying that h : M̂1

- M̂2 and op : A⊗M1
- M1 is algebraic for M̂1. Let

Eqop be Eq plus the equations saying that op : A ⊗M2
- M2 is algebraic

for M̂2 and is a lifting of op along h. The claims that op] is a lifting of op along
h and uniqueness amount to the following equations
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• s : A, x : M1 `Eq op](s, h(x)) = h(op(s, x)) : M2

op](s, h(x)) by definition
h(op(s, e1)) ·2 h(x) by (2.16) in Eq
h(op(s, e1) ·1 x) by (3.3) in Eq

h(op(s, x))

• s : A, x : M2 `Eqop op(s, x) = op](s, x) : M2

op(s, x) by (3.3) in Eqop
op(s, e2) ·2 x by (2.15) in Eqop

op(s, h(e1)) ·2 x by (3.4) in Eqop

h(op(s, e1)) ·2 x by definition
op](s, x)

�

Remark 3.5. An algebraic operation may have several liftings along a monoid
map. For instance, take Set with the monoidal structure given by finite products
(see Example 2.14), a monoid M̂ = (M, e, ·) and an op : M - M algebraic for
M̂ , i.e. op(x) = op′ · x where op′ = op(e). Define the monoids 2̂ =̂ ({0, 1}, 1, ∗)
and N̂ =̂ M̂ × 2̂, and consider the monoid map h : M̂ - N̂ given by
h(x) =̂ (x, 1). The unique algebraic lifting of op along h is op](x, b) = (op′ ·x, b),
a different lifting of op along h is given by op(x, b) =̂ (op′ · x, 1). �

3.1. Examples of Operations
Among the different flavours of monads, strong monads are those needed to

interpret the monadic metalanguage of [31, 32]. In this section we give examples
of strong monads (on a cartesian closed category) and associated operations,
saying whether the operations are algebraic, first-order or H-operations. There
are equivalent ways of defining strong monads on a cartesian closed category
C, we borrow the definition adopted in Haskell, and freely use simply typed
lambda-calculus as internal language to denote objects and maps in C.

Definition 3.6 (Strong Monad). A strong monad on a cartesian closed cat-
egory C is a triple M̂ = (M, retM , bindM ) consisting of

• a map M : |C| - |C| on the objects of C

• a family retMX : X - MX of maps with X ∈ C

• a family bindMX,Y : MX × (MY )X - MY of maps with X,Y ∈ C

such that for every a : A, f : (MB)A, u : MA and g : (MC)B

bindMA,B(retMA (a), f) = f a

bindMA,A(u, retMA ) = u

bindMA,C(u, λa : A. bindMB,C(f a, g)) = bindMB,C(bindMA,B(u, f), g)
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A strong monad morphism τ : M̂ - N̂ is a family τX : MX - NX of
maps with X ∈ C such that for every a : A, u : MA and f : (MB)A

τA (retMA (a)) = retNA (a)
τB (bindMA,B(u, f)) = bindNA,B(τA u, λa : A. τB (f a))

Remark 3.7. In the monoidal category Endo(C)s of strong endofunctors on
a cartesian closed category C what is usually meant by an algebraic operation
for a strong monad M̂ (e.g. see [35]) is an algebraic operation (in the sense of
Definition 3.1) of arity A(X) = J×XI (with I, J ∈ C) for M̂ . For these algebraic
operations there is another bijective correspondence, in addition to the one given
in Remark 3.3, namely between algebraic operations opX : J×(MX)I - MX
for M̂ and maps op′′ : J - MI in C

op′′(j : J) : MI =̂ opI(j, ret
M
I )

opX(j : J, f : (MX)I) : MX =̂ bindMI,X(op′′(j), f)

This correspondence does not hold when Endo(C)s is replaced by Endo(C), and
does not give improved lifting results over Theorem 3.4. �

Example 3.8. The monad M̂ = (M, retM , bindM ) of continuations in R is

MX =̂ R(RX)

retMX (x : X) =̂ λk : RX . k x
bindMX,Y (m : MX, f : MY X) =̂ λk : RY .m (λx : X. f x k)

It has two algebraic operations, one for the functor AabortX = R and the other
for the functor AcallccX = X(RX), namely

abortX (r : R) =̂ λk : RX . r

callccX(f : (MX)(RMX)) =̂ λk : RX . f (λt : MX. t k) k

Usually, the associated operation is callccX,Y : (MX)((MY )X) - MX, which
is definable from callcc, abort, unit and bind of the monad (see [17]). �

Example 3.9. The monad M̂ = (M, retM , bindM ) of environments in S is

MX =̂ XS

retMX (x : X) =̂ λs : S. x
bindMX,Y (m : MX, f : MY X) =̂ λs : S. f (ms) s

It has an algebraic operation for the functor AreadX = XS and a first-order
operation (but not algebraic) for the functor AlocalX = SS ×X, namely

readX (f : (MX)S) =̂ λs : S. f s s

localX(f : SS , t : MX) =̂ λs : S. t (f s)

�
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Example 3.10. The monad M̂ = (M, retM , bindM ) of side-effects on S is

MX =̂ (X × S)S

retMX (x : X) =̂ λs : S. (x, s)
bindMX,Y (m : MX, f : MY X) =̂ λs : S. let (a, s′) = ms in f a s′

It has two algebraic operations, one for the functor AreadX = XS and the other
for the functor AwriteX = S ×X, namely

readX (k : (MX)S) =̂ λs : S. k s s
writeX (s : S,m : MX) =̂ λs′ : S.ms

�

Example 3.11. The monad M̂ = (M, retM , bindM ) of complexity on a monoid
(W, 0,+) in C is

MX =̂ X ×W
retMX (x : X) =̂ (x, 0)

bindMX,Y ((x,w) : MX, f : MY X) =̂ let (y, w′) = f x in (y, w + w′)

It has an algebraic operation for the functor AaddX = X×W and H-operations
for the functors HcollectAM̂X = MA×X(A×W ), namely

addX (t : MX,w : W ) =̂ let (x,w′) = t in (x,w′ + w)

collectA,X(t : MA, f : X(A×W )) =̂ let (y, w) = t in (f t, w)

Usually the associated operation is collectX : MX - M(X ×W ), which is
definable from the operations collectA, unit and bind of the monad. �

Example 3.12. When C has binary sums, the monad M̂ = (M, retM , bindM )
of exceptions in E is

MX =̂ X + E

retMX (x : X) =̂ inlx

bindMX,Y (m : MX, f : MY X) =̂ [f, inr]m

It has an algebraic operation for the functor AthrowX = E and a first-order
operation (but not algebraic) for the functor AhandleX = X ×XE , namely

throwX (e : E) =̂ inr e

handleX (m : MX, h : (MX)E) =̂ [inl, h](m)

�
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Example 3.13. Algebraic theories [29] are presented by operations and equa-
tions. More precisely, an algebraic theory T = (Σ, Eq) consists of a signature
Σ = (On | n ∈ N), where On is the set of operations of arity n, and a set Eq of
equations (between Σ-terms). They are a way to define monads and associated
operations (see [20] for generalizations of equational theories that go beyond
Set). In fact, an algebraic theory T induces a monoid M̂T in Endo(Set)f (see
Example 2.18), i.e. a finitary monad4 on Set. Conversely, every monoid in
Endo(Set)f is isomorphic to some M̂T . The monad M̂T has an algebraic oper-
ation oX : (MTX)n - MTX for each o ∈ On, where oX is the interpretation
of o in the free T -algebra over X. These operations can be collected in one alge-
braic operation opX : Σ(MTX) - MTX, where Σ is the finitary endofunctor
Σ(X) =̂

∐
n∈N

On ×Xn.

All monads for collection types (such as lists, bags, sets) arise from balanced
finitary algebraic theories [30]. The monad in Example 3.8 is finitary when the
set R has at most one element. The monads of Example 3.9 and 3.10 are
finitary when the set S is finite. For instance, the monad MX = (X × S)S

corresponds to the algebraic theory [36] given by an operation read of arity |S|,
unary operations writes for s ∈ S, and equations

t = read(t | i ∈ S)
read(read(ti,j | j ∈ S) | i ∈ S) = read(ti,i | i ∈ S)

read(ti | i ∈ S) = read(writei(ti) | i ∈ S)
writei(read(tj | j ∈ S)) = writei(ti) with i ∈ S

writei(writej(t)) = writej(t) with i, j ∈ S

The monads of Example 3.11 and 3.12 are always finitary. When M̂ is the free
monad on Σ, i.e. the monad induced by the algebraic theory T = (Σ, ∅), one
can associate to M̂ two other operations

• elimX : XΣX × XA - XMA captures initiality of MA among the Σ-
algebras over A, namely elimX(α, f) is the unique Σ-homomorphism f∗

from Σ(MA)
opA- MA (the free algebra over A) to ΣX

α- X such that
f∗ ◦ retMA = f . elim generalizes bindMA,X (see the try construct in [37]), and
usually cannot be presented as an H-operation.

• caseX : MA×XA ×XΣ(MA) - X does case analysis on MA, which is
isomorphic to A+ Σ(MA). The instance of case obtained by replacing X
with MX, i.e. caseX : MA × (MX)A × (MX)Σ(MA) - MX, can be
presented as an H-operation for HN̂X =̂ NA × (NX)A × (NX)Σ(MA),
provided the M in contravariant position is fixed.

�

4In Set every monad is strong.
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4. Monoid Transformers

This section introduces a taxonomy of monoid transformers in the setting of
a monoidal category Ê and gives examples of monoid transformers motivated by
the incremental approach to monadic semantics. The main motivation for the
taxonomy are the solutions to the lifting problem of Section 5, which depend
on where a transformer fits in the taxonomy.

The minimum requirement on a monoid transformer T is to map a monoid
M̂ ∈ Mon(Ê) to a monoid TM̂ (and a monoid morphism M̂ - TM̂).
The maximum requirement is when the monoid transformer T is induced by
a monoidal endofunctor T̂ on Ê . In the rest of this section we call monoid
transformers simply transformers.

Definition 4.1 (Monoid Transformers). Let Ê be a monoidal category, and
M be the category Mon(Ê) of monoids in Ê, then

1. A basic transformer (T, in) is a 2-cell |M|
⊂

In -
⇓ in

T
- M (in the 2-category

of categories), where |M| is the discrete sub-category of M and In is the
inclusion functor

2. A covariant transformer (T, in) is a 2-cell M
Id -
⇓ in

T
- M

3. A functorial transformer is a covariant transformer (T, in) and a 2-cell

E
Id -
⇓ in

T
- E such that U ◦ T = T ◦ U and U(in−) = inU(−), i.e.

M
Id -
⇓ in

T
- M

U - E =M
U - E

Id -
⇓ in

T
- E

4. A monoidal transformer is a 2-cell Ê
Îd -
⇓ in

T̂
- Ê (in the 2-category of

monoidal categories), i.e. T̂ is a monoidal functor and in is a monoidal
natural transformation.

Proposition 4.2. The following implications on transformers hold:

monoidal =⇒ functorial =⇒ covariant =⇒ basic.

Proof. Immediate from the definitions and Theorem 2.6 �
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Remark 4.3. Also the monad/theory combinations proposed in [27, 15] have
a natural generalization in the setting of a monoidal category, namely a monoid
combination is a bifunctor ⊗C : M ×M - M, which makes M into a
monoidal category with Î as unit. Since Î is the initial monoid, one can define

a pair of 2-cells M×M
πi -
⇓ ini
⊗C

- M for i = 1, 2. Thus, every monoid M̂

induces a covariant transformer T (−) =̂ M̂ ⊗C −, by fixing the first monoid in
the combination. However, there are functorial transformers, which are not of
the form M̂ ⊗C −, for any choice of ⊗C and M̂ . A simple counter-example in
the categoryM of finitary monads on Set (or equivalently algebraic theories) is
the list transformer TMX = µX ′.M(1+X×X ′), described in Example 4.9. At
the level of algebraic theories (see Example 3.13) the list transformer T maps a
presentation (Σ, Eq) to the presentation obtained by adding to (Σ, Eq) a binary
(infix) operation @, a constant nil, and the equations

nil@x = x = x@nil (x@y)@z = x@(y@z)
op(xi|i ∈ n)@y = op(xi@y|i ∈ n) for any op ∈ Σ of arity n

We are unware of simple conditions on ⊗C and M̂ implying that the induced
transformer T (−) = M̂⊗X− is functorial or monoidal. Such implications would
be of interest to extend our lifting results to combinations. �

4.1. Examples of Transformers
We give examples of strong monad transformers, i.e. monoid transformers

on the monoidal category Endo(C)s with C cartesian closed, and say where they
fit in the taxonomy. Some examples require additional assumptions on C and
use a monoidal sub-category of Endo(C)s.

• The transformers TMX = MXS (Example 4.5), TMX = M(X × S)S

(Example 4.6) and TMX = M(X ×W ) (Example 4.7) are monoidal;

• The transformer TMX = µX ′.M(X + SX ′) (Example 4.8) is functorial,
but not monoidal. By a suitable choice of S this transformer becomes
TMX = M(X+E) for exceptions, TMX = µX ′.M(X+X ′) for resump-
tions, TMX = µX ′.M(X + V ×X ′ +X ′

V ) for interactive I/O.

• The transformer TMX = µX ′,M(1+X×X ′) (Example 4.9) is covariant,
but not functorial.

Finally, Example 4.10 gives monoid transformers on Endo(Set), showing that
the implications in Proposition 4.2 cannot be reversed.

As already done for strong monads (see Definition 3.6), we borrow from
Haskell the definition of strong endofunctor on a cartesian closed category C,
and freely use simply typed lambda-calculus as internal language to denote
objects and maps in C.



28

Definition 4.4 (Strong Endofunctor). A strong endofunctor on a cartesian
closed category C is a pair F̂ = (F,mapF ) consisting of

• a map F : |C| - |C| on the objects of C

• a family mapFX,Y : Y X × FX - FY of maps with X,Y ∈ C

such that for every u : FA, f : BA and g : CB:

mapFA,A(idA, u) = u

mapFA,C(g ◦ f, u) = mapFB,C(g, mapFA,B(f, u))

A strong natural transformation τ : F̂ - Ĝ is a family τX : FX - GX
of maps with X ∈ C such that for every u : FA and f : BA

τB(mapFA,B(f, u)) = mapGA,B(f, τA(u))

Example 4.5. The transformer (T, in) for adding environments in S ∈ C is
defined as follows:

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ MXS

retNX(x) =̂ λs : S. retMX (x)
bindNX,Y (c, f) =̂ λs : S. bindMX,Y (c s, λx : X. f x s)

• in maps a strong monad M̂ to τ : M̂ - TM̂ given by

τX(c : MX) =̂ λs : S. c

This transformer is monoidal. More precisely, it is induced by the following
monoidal functor T̂ = (T, φI, φ) and monoidal natural transformation in

• T maps a strong functor F̂ to the strong functor Ĝ given by

GX =̂ (FX)S

mapGX,Y (f, u) =̂ λs : S.mapFX,Y (f, u s)

and maps τ : F̂1
•- F̂2 to Tτ : T F̂1

•- T F̂2 given by

(Tτ)X(u) =̂ λs : S. τX(u s)

• φI : Id
•- T (Id) and φF̂2,F̂1

: T F̂2 ◦ T F̂1
•- T (F̂2 ◦ F̂1) are

φI,X(x : X) =̂ λs : S. x
φF̂2,F̂1,X

(u : F2((F1X)S)S) =̂
λs : S.mapF2

(F1X)S ,F1X
(λf : (F1X)S . f s, u s)

• inF̂ : F̂ •- T F̂ is inF̂ ,X(u : FX)=̂ λs : S. u

�
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Example 4.6. The transformer (T, in) for adding side-effects on S ∈ C is
defined as follows:

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ M(X × S)S

retNX(x) =̂ λs : S. retMX×S(x, s)

bindNX,Y (c, f) =̂ λs : S. bindMX×S,Y×S(c s, λ(x : X, s′ : S). f x s′)

• in maps a strong monad M̂ to τ : M̂ - TM̂ given by

τX(c : MX) =̂ λs : S. bindMX,X×S(c, λx : X. retMX×S(x, s))

Also this transformer is monoidal. More precisely, it is induced by the following
monoidal functor T̂ and monoidal natural transformation in

• T maps a strong functor F̂ to the strong functor Ĝ given by

GX =̂ F (X × S)S

mapGX,Y (f, u) =̂ λs : S.mapFX×S,Y×S(λ(x : X, s′ : S). (f x, s′), u s)

and maps τ : F̂1
•- F̂2 to Tτ : T F̂1

•- T F̂2 given by

(Tτ)X(u) =̂ λs : S. τX×S(u s)

• φI : Id
•- T (Id) and φF̂2,F̂1

: T F̂2 ◦ T F̂1
•- T (F̂2 ◦ F̂1) are

φI,X(x : X) =̂ λs : S. (x, s)
φF̂2,F̂1,X

(u : (F2((F1X × S)S × S))S) =̂
λs : S.mapF2

F1(X×S)S×S,F1(X×S)
(λ(f : F1(X × S)S , s′ : S). f s′, u s)

• inF̂ : F̂ •- T F̂ is inF̂ ,X(u : FX)=̂λs : S.mapFX,X×S(λx : X. (x, s), u)

�

Example 4.7. The transformer (T, in) for adding complexity on a monoid
(W, 0,+) in C is defined as follows:

• T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ M(X ×W )
retNX(x) =̂ retMX×W (x, 0)

bindNX,Y (c, f) =̂ bindM (c, λ(x : X,w : W ).

bindM (f x, λ(y : Y,w′ : W ). retM (y, w + w′)) )

• in maps a strong monad M̂ to τ : M̂ - TM̂ given by

τX(c : MX) =̂ bindMX,X×W (c, λx : X. retMX×W (x, 0))

Also this transformer is monoidal (we skip the details). �



30

Example 4.8. In this example we need additional assumptions on C, namely

• existence of binary sums A1
inl- A1 +A2

�inr
A2

A

[f1, f2]

?�

f 2
f
1

-

(we write f1 + f2 for the action of + on maps), and

• existence of initial algebras αF : F (µX.FX) - µX.FX for every
strong endofunctor F̂ .

In order to satisfy the last assumption one could take as C the cartesian closed
category PA of partial equivalence relations, and replace Endo(PA)s with the
more restricted category Endo(PA)r of realizable endofunctors and realizable
natural transformations (see Example 2.20). Alternatively, one could take the
category of finitary endofunctors (see Example 2.18) or the category of contain-
ers [1] which are also closed under initial algebras. Given a realizable endofunc-
tor Ŝ, the transformer (T, in) for adding Ŝ-steps is defined as follows:

• T maps a realizable monad M̂ to the realizable monad N̂ given by

NX =̂ µX ′.M(X + SX ′)
retNX(x) =̂ α(retMX+S(NX)(inlx))

stepX : S(NX) - NX

stepX(u) =̂ α(retMX+S(NX)(inr u))

bindNX,Y (c, f) =̂ h c

where NX
h- NY is the unique M(X + S−)-algebra morphism from

the initial algebra to β : M(X + S(NY )) - NY given by

β(c) =̂ α(bindMX+S(NY ),Y+S(NY )(c, α
−1 ◦ [f, stepY ]))

• in maps a realizable monad M̂ to τ : M̂ - N̂ = TM̂ given by

τX(c : MX) =̂ α(bindMX,X+S(NX)(c, α
−1 ◦ retNX))

This transformer is functorial. More precisely, the underlying realizable endo-
functor transformer (T, in) is

• T maps a realizable functor F̂ to the realizable functor Ĝ given by

GX =̂ µX ′. F (X + SX ′)
mapGX,Y (f, u) =̂ hu
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where GX
h- GY is the unique F (X+S−)-algebra morphism from the

initial algebra to β : F (X + S(GY )) - GY given by

β(u) =̂ α(mapFX+S(GY ),Y+S(GY )(f + idS(GY ), u))

and maps τ : F̂1
•- F̂2 to Tτ : T F̂1 = Ĝ1

•- Ĝ2 = T F̂2 given by

(Tτ)X(u) =̂ hu

where G1X
h- G2X is the unique F1(X +S−)-algebra morphism from

the initial algebra to β : F1(X + S(G2X)) - G2X given by

β(u) =̂ α(τX+S(G2X)(u))

• in maps a realizable endofunctor F̂ to τ : F̂ - Ĝ = T F̂ given by

τX(u : FX) =̂ α(mapFX,X+S(GX)(inl, u))

This transformer may fail to be monoidal (see Example 4.10). �

Example 4.9. We define the list transformer, which needs additional assump-
tions, like those identified in Example 4.8. Therefore, we take as C the cartesian
closed category PA of partial equivalence relations, and replace Endo(PA)s with
the more restricted category Endo(PA)r of realizable endofunctors and realizable
natural transformations. The list transformer (T, in) is defined as follows:

• T maps a realizable monad M̂ to the realizable monad N̂ given by

NX =̂ µX ′.M(1 +X ×X ′)
nilX : NX

nilX =̂ α(retM1+X×NX(inl ∗))
consX : X ×NX - NX

consX(x, l) =̂ α(retM1+X×NX(inr(x, l)))

retNX(x) =̂ consX(x, nilX)
bindNX,Y (c, f) =̂ h c

where NX
h- NY is the unique M(1 +X×−)-algebra morphism from

the initial algebra to β : M(1 +X ×NY ) - NY given by

β(c) =̂ α(bindM1+X×NY,1+Y×NY (c, α−1 ◦ [nilY , λ(x, l). appY ((f x), l)]))

with NX
ΛappX- (NX)NX the unique M(1 + X × −)-algebra from the

initial algebra to Λβ : M(1 +X × (NX)NX) - (NX)NX given by

β(c, l) =̂ α(bindM1+X×(NX)NX ,1+X×NX(c, α−1 ◦ [nilX , λ(x, f). consX(x, f l)]))
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To prove that retN and bindN satisfy the equations in Definition 3.6, one
can use the following properties of nilX , consX and appX

appX(nilX , l) = l = appX(l, nilX)
appX(consX(x, l1), l2) = consX(x, appX(l1, l2))
appX(appX(l1, l2), l3) = appX(l1, appX(l2, l3))

• in maps a realizable monad M̂ to τ : M̂ - N̂ = TM̂ given by

τX(c : MX) =̂ α(bindMX,1+X×NX(c, α−1 ◦ retNX))

This transformer is covariant, but not functorial. In fact, take the endofunctor
MX = X ×N , where N ∈ C is the natural numbers object. Consider the two
monoid N̂1 =̂ (N, 0,+) and N̂2 =̂ (N, 1, ∗) with N as carrier, they induce differ-
ent monads M̂i with M as underlying endofunctor. The natural transformations
inM̂i

: MX - TMX are different, and so they are not determined by the
underlying endofunctor (as required in the definition of functorial transformer).

We conjecture that the list transformer is a quotient of the binary tree trans-
former, which adds B̂-steps for the functor B(X) =̂ 1+X×X (see Example 4.8).
A more precise statement requires the equational systems of [11]. �

Example 4.10. We give four (strong) monad transformers on Set, which show
that the implications in Proposition 4.2 cannot be reversed. When convenient,
we use the fact that every endofunctor/monad on Set is strong (see Section 3.1).

1. The transformer (T, in) for adding continuations is defined as follows, T
maps a strong monad M̂ to the strong monad N̂ of continuations in MR
(see Example 3.8)

NX =̂ (MR)((MR)X)

retNX(x) =̂ λk : (MR)X . k x
bindNX,Y (c, f) =̂ λk : (MR)Y . c (λx : X. f x k)

and in maps M̂ to the morphism τ : M̂ - TM̂ given by

τX(c : MX) =̂ λk : (MR)X . bindMX,R(c, k)

This transformer is not covariant, because M is used in contravariant
position in NX.

2. Given a strong monad M̂ , we say that a computation c : MX is idem-
potent when c = c; c where c1; c2 =̂ bindMX,X(c1, λx : X. c2).
The transformer (T, in) making computations idempotent is defined
as follows, T maps a strong monad M̂ to the smallest quotient monad (see
Example 2.13) generated by the family of relations

RX =̂ {(c, c; c) | c ∈MX}
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and inM̂ is the epimorphism from M̂ to the quotient monad.
This transformer is covariant, because τX(c; c) = τX(c); τX(c) : NX for
any strong monad morphism τ : M̂ - N̂ and c : MX, but it is not
functorial. In fact, there are two monads M̂ and N̂ of complexity (see
Example 3.11) with the same underlying endofunctor F (−) =̂ − × bool,
with bool the set of booleans, such that TM̂ = M̂ and TN̂ = Îd:
• M̂ is the strong monad induced by the monoid (bool, false, or) in Set.

Since this monoid is idempotent, all computations in MX are already
idempotent, therefore TM̂ = M̂ .

• N̂ is the strong monad induced by the monoid (bool, false, xor) in Set.
Since xor(true, true) = false, the quotient monad TN̂ must identify
(x, false) and (x, true) for any x : X (and this suffices to make all
computations idempotent).

3. The transformer (T, in) for adding exceptions in E is defined as follows,
T maps a strong monad M̂ to the strong monad N̂ given by

NX =̂ M(X + E)
retNX(x) =̂ retMX+E(inlx)

throwX(e : E) =̂ retMX+E(inr e)

bindNX,Y (c, f) =̂ bindMX+E,Y+E(c, [f, throwX ])

and in maps M̂ to the morphism τ : M̂ - TM̂ given by

τX(c : MX) =̂ bindMX,X+E(c, retNX)

This transformer is functorial (since it is the instance of Example 4.8 with
SX = E), more precisely T maps an endofunctor F to the endofunctor
F (− + E), but it is not monoidal. In fact, if it were monoidal, then
there should be a natural transformation

φG,F : G(F (−+ E) + E) •- G(F (−+ E)).

However, this is impossible, when E = 1, GX = X and FX = 0.
4. The identity transformer, which maps M̂ to itself, is monoidal.

�

5. Transformers and Liftings

Theorem 3.4 gives a unique way to lift algebraic operations along any monoid
map. Therefore, given a basic transformer (T, in) and a monoid M̂ , every alge-
braic operation A⊗M op- M for M̂ can be lifted along inM̂ . In this section, we
exploit the structure of monoidal and functorial transformers to provide liftings
for more general classes of operations, including first-order operations.

Going back to Fig 1 on page 3, when one moves from top to bottom the
operations become more general, but the lifting theorems need additional as-
sumptions on the transformers or the monoidal category Ê .
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Remark 5.1. For covariant transformers we have no lifting result which im-
proves over Theorem 3.4. However, for specific transformers, one may find
liftings which are ad-hoc in the transformer, but uniform in the operations (e.g.
for the list transformer there is a simple way to lift any first-order operation).
In general one should first try to exploit general lifting results, only when these
results are not applicable, one should resort to more ad-hoc methods. �

Theorem 5.2 (Monoidal Lifting). If (T̂ , in) is a monoidal transformer, with
T̂ = (T, φI, φ), and op : A ⊗M - M is a first-order operation for M̂ , then
there is a lifting of op along inM̂ given by

op =̂ A⊗ TM
inA ⊗ id- TA⊗ TM

φ- T (A⊗M)
T (op)- TM (5.1)

More generally, if H(−) = (A⊗U(−))⊗F , with A,F ∈ E, and op : HM̂ - M
is an H-operation for M̂ , then there is a lifting op of op along inM̂ given by

(TA⊗ TM)⊗ F
φ⊗ inF- T (A⊗M)⊗ TF

φ- T ((A⊗M)⊗ F )

(A⊗ TM)⊗ F

(inA ⊗ id)⊗ id

6

op
- TM

T (op)

?

(5.2)

Proof. The first-order case reduces to the more general case when F = I. We
need to show that diagram (3.2) commutes, i.e. op◦ ((id⊗ inM )⊗ id) = inM ◦op.
We expand the definition of op and prove that the following diagram commutes

(TA⊗ TM)⊗ F
φ⊗ inF- T (A⊗M)⊗ TF

φ- T ((A⊗M)⊗ F )

(1)

(A⊗ TM)⊗ F

(inA ⊗ id)⊗ id

6

(1) T (A⊗M)⊗ F

id⊗ inF

6
φ⊗ id

-

TM

T (op)

?

(2)

(A⊗M)⊗ F

inA⊗M ⊗ id

6

op -

in (A
⊗M

)⊗
F

-

�
(id⊗ in

M )⊗ id

M

inM

6

1. because in is a monoidal natural transformation
2. because in is a natural transformation.

�
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5.1. Functorial Lifting
We now focus on functorial transformers. Before proving the main result

(Theorem 5.5), we need to establish two lemmas.

Lemma 5.3 (Derived Lifting). Given a functorial transformer (T, in), two
H-operations op2 : HN̂ - N and op2 : H(TN̂) - TN with op2 a lifting
of op2 along inN̂ , a monoid map t : M̂ - N̂ and a map f : N - M , let

op1 =̂ HM̂
Ht- HN̂

op2 - N
f - M (5.3)

op1 =̂ H(TM̂)
H(Tt)- H(TN̂)

op2- TN
Tf- TM (5.4)

then op1 is a lifting of op1 along inM̂ .

Proof. The claim amounts to the outer square of the commuting diagram

H(TM̂)
op1 - TM

(1)

H(TN̂)
op2-

H
(T
t)
-

TN

T
f

-

(2) (3) (2)

HN̂

H(inN̂ )
6

op2

- N

inN

6

(1)

HM̂

H(inM̂ )

6

op1

-

H
t

-

M

inM

6

f

-

1. by definition of op1 and op1

2. because in is a natural transformation
3. because, by assumption, op2 is a lifting of op2 along inN̂ .

�
Consider Lemma 5.3 when H(−) = A ⊗ U(−) and op2 : A ⊗ N - N

is algebraic for N̂ , then one can take as op2 the algebraic lifting of op2 along
inN̂ (see Theorem 3.4). When Ê has exponentials, we show that every op1 :
A⊗M - M can be expressed (as in Lemma 5.3) using an algebraic op2, and
thus op1 has a lifting along inM̂ .
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Lemma 5.4 (Additional properties of KM). If Ê has exponentials, M̂ is a
monoid and op : A⊗M - M is a first-order operation for M̂ , let

fromM̂ (f : MM ) : M =̂ f e (5.5)

õp(s : A, f : MM ) : MM =̂ λx : M.op(s, f x) (5.6)

then the following claims hold (where KM and toM̂ are given in Example 2.11)

(a) M
toM̂- MM

fromM̂- M is the identity on M

(b) õp : A⊗MM - MM is algebraic for KM and

op = A⊗M
toM̂- A⊗MM õp- MM

fromM̂- M

(c) op algebraic for M̂ implies õp is the algebraic lifting of op along toM̂ .

Proof. Let Eq be the set of equations saying that M̂ is a monoid (Defini-
tion 2.7) and Eqop be Eq plus (3.1) saying that op is algebraic for M̂ , then the
claims amount to the equations (we drop the type M of bound variables)

(a) x : M `Eq fromM̂ (toM̂ (x)) = x : M

fromM̂ (toM̂ (x)) by definition
(λx′.x · x′) e by reduction (β.→)
x · e by (2.12) in Eq
x

(b) s : A, x′1, x
′
2 : MM `Eq cM (õp(s, x′1), x′2) = õp(s, cM (x′1, x

′
2)) : MM

cM (õp(s, x′1), x′2) by definition
λx.(λx.op(s, x′1 x)) (x′2 x) by reduction (β.→)
λx.op(s, (λx.x′1 (x′2 x)) x) by definition
õp(s, cM (x′1, x

′
2))

s : A, x : M `Eq fromM̂ (õp(s, toM̂ (x))) = op(s, x) : M

fromM̂ (op(s, toM̂ (x))) by definition
(λx′.op(s, (λx′.x · x′) x′)) e by reduction (β.→)
op(s, x · e) by (2.12) in Eq
op(s, x)

(c) s : A, x : M `Eqop õp(s, toM̂ (x)) = toM̂ (op(s, x)) : MM

õp(s, toM̂ (x)) by definition
λx′.op(s, (λx′.x · x′) x′)) by reduction (β.→)
λx′.op(s, x · x′) by (3.1) in Eqop

λx′.op(s, x) · x′ by definition
toM̂ (op(s, x))

�
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Theorem 5.5 (Functorial Lifting). If (T, in) is a functorial transformer, and
op : A ⊗M - M is a first-order operation for M̂ , then there is a lifting op
of op along inM̂ given by

op =̂ A⊗ TM
id⊗ T (toM̂ )

- A⊗ T (MM )
õp
]

- T (MM )
T (fromM̂ )

- TM (5.7)

where õp is defined in (5.6) and õp
] is the unique algebraic lifting of õp along

in(KM) given by Theorem 3.4.

Proof. The lifting op is the op2 given in Lemma 5.3 when one takes N̂ = KM ,

op2 = A⊗N õp- N , thus op2 is algebraic for N̂ (by Lemma 5.4), op2 the unique

algebraic lifting A⊗ (TN)
op]

2- TN of op2 along inN̂ , t = toM̂ , f = fromM̂ , and
thus op1 = op (again by Lemma 5.4). �

5.2. Coincidence of Liftings
For some pair operation-transformer two (or more) of the lifting theorems

summarized in Fig 1 are applicable. For instance, if op is an algebraic operation
for M̂ and (T̂ , in) is a monoidal transformer, then one can apply both the
algebraic lifting (Theorem 3.4) and the monoidal lifting (Theorem 5.2). We
prove that when two lifting theorems are applicable, they yield the same result.

Theorem 5.6 (Algebraic/Monoidal). If (T̂ , in) is a monoidal transformer
and op : A ⊗M - M is algebraic for M̂ , then the monoidal lifting (Theo-
rem 5.2) and the algebraic lifting (Theorem 3.4) of op along inM̂ coincide.

Proof. Equation (3.3), saying that op is algebraic for M̂ = (M, e,m), amounts
to op = m ◦ (op′ ⊗ id), where op′(s : A) : M =̂ op(s, e). The coincidence follows
by the commuting diagram below, where the top path from A⊗ TM to TM is
the monoidal lifting of op, and the bottom path is the algebraic lifting of op along
inM̂ : M̂ - TM̂ (the multiplication of TM̂ is (Tm) ◦ φ, see Theorem 2.6)

A⊗ TM
inA ⊗ id- TA⊗ TM

φ- T (A⊗M)
T (op)- TM

(1) (2) (3)

M ⊗ TM

op′ ⊗ id

?

inM ⊗ id
- TM ⊗ TM

T (op′)⊗ T (id)

?

φ
- T (M ⊗M)

T (op′ ⊗ id)

?

Tm
- TM

wwwwwwwwww
1. because in is a natural transformation
2. because φ is a natural transformation
3. because op = m ◦ (op′ ⊗ id) and functoriality of T .

�



38

Theorem 5.7 (Algebraic/Functorial). If (T, in) is a functorial transformer
on a monoidal category with exponentials and op : A ⊗ M - M is alge-
braic for M̂ , then the functorial lifting (Theorem 5.5) and the algebraic lifting
(Theorem 3.4) of op along inM̂ coincide.

Proof. Since op is algebraic for M̂ , we can define the following algebraic liftings

• op] : A⊗ TM - TM the algebraic lifting of op along inM̂

• õp : A ⊗MM - MM the algebraic lifting of op along toM̂ , which is
given by (5.6) of Lemma 5.4

• õp
] : A⊗ T (MM ) - T (MM ) the algebraic lifting of õp along in(KM).

The coincidence follows by the commuting diagram below, where the bottom
path from A⊗ TM to TM is the functorial lifting of op given by Theorem 5.5

A⊗ TM
op]- TM

(1)

A⊗ T (MM )

id⊗ T (toM̂ )

?

õp
]
- T (MM )

T (toM̂ )

?

T (fromM̂ )
- TM

================

(2)

1. because, õp
] is the unique algebraic of op] along T (toM̂ ), in fact

• op] is the unique algebraic lifting of op along inM̂

• õp
] is the unique algebraic lifting of op along in(KM) ◦ toM̂

• T (toM̂ ) ◦ inM̂ = in(KM) ◦ toM̂ by naturality of in

2. by Lemma 5.4(a) and functoriality of T .

�

Theorem 5.8 (Functorial/Monoidal). If (T̂ , in) is a monoidal transformer
on a monoidal category with exponentials and op : A ⊗M - M , then the
functorial lifting (Theorem 5.5) and the monoidal lifting (Theorem 5.2) of op
along inM̂ coincide.

Proof. The functorial lifiting of op is given by

A⊗ TM
id⊗ T (toM̂ )

- A⊗ T (MM )
õp
]

- T (MM )
T (fromM̂ )

- TM

where õp
] is the algebraic lifting of õp along in(KM) (see Theorem 5.5), or equiv-

alently (by Theorem 5.6) õp
] is the monoidal lifting of õp along in(KM), i.e.

õp
] = A⊗ T (MM )

inA ⊗ id- TA⊗ T (MM )
φ- T (A⊗MM )

T (õp)- T (MM )
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The coincidence follows by the commuting diagram below, where the top path
from A⊗ TM to TM is the monoidal lifting of op, and the bottom path is the
functorial lifting of op

A⊗ TM
inA ⊗ id- TA⊗ TM

φ- T (A⊗M)
T (op) - TM

(1) (2)

A⊗ T (MM )

id⊗ T (toM̂ )

?

inA ⊗ id
- TA⊗ T (MM )

T (id)⊗ T (toM̂ )

?

φ
- T (A⊗MM )

T (id⊗ toM̂ )

?

T (õp)
- T (MM )

T (fromM̂ )

6

1. because φ is a natural transformation
2. by Lemma 5.4(b) and functoriality of T .

�

6. Conclusions

2-categories versus monoidal categories. Category-theoretic notions, such as
monads and adjunctions, can be recast in the setting of a 2-category [21], in fact
for monads 2-categories with one object suffice. A 2-category C with one object
correspond to a strict monoidal category Ê , and the correspondence induces a
bijection between monads in C and monoids in Ê . Moreover, it is natural to
drop the strictness assumption on Ê (or equivalently replace 2-categories with
bicategories [6]). Therefore, the move from monads to monoids is a natural
generalization. What is not obvious, is the possibility of addressing the lifting
problem (for monad transformers) at this level of generality, indeed this is the
main novelty w.r.t. [17].

Relation with the companion paper [17]. The main results in the companion pa-
per are instances of the algebraic and functorial lifting (Theorems 3.4 and 5.5)
for the monoidal category ÊFω of endofunctors expressible in Fω (see Exam-
ple 2.19). Theorem 5.5 is not applicable to ÊFω, because it does not have ex-
ponentials (in addition some claims in [17] are wrong). However, this problem
is overcome by replacing ÊFω with Endo(PFω)r of Example 2.21. Finally, the
companion paper works with expressible monad transformers, a proper subset of
the monoid transformers on ÊFω, which are more amenable to implementation
in a programming language.

Generalizations of Algebraic Theories. [11] has proposed a notion of (iterated)
equational system on a category C, which provides a significant generalization of
algebraic theories and constructions of free algebras. The definition of functorial
term of arity A given in [11] is closely related to the definition of algebraic
operation of arity A for a monoid in the monoidal category of endofunctors
on C (this is further evidence that the terminology “algebraic operation” is
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appropriate). In fact, if the category of algebras for an (iterated) equational
system is equivalent to the category CM̂ of Eilenberg-Moore algebras for the
monad M̂ , then there is a bijective correspondence

T (MX
α- X) = AX

opX- MX
α- X

opX = AX
AηX- A(MX)

T (µX)- MX

between natural transformations op : A •- M , i.e. algebraic operations of ar-
ity A for M̂ , and functorial terms T of arity A, i.e. functors T : CM̂ - A-Alg
such that CM̂ U- C = CM̂ T- A-Alg

U- C. This correspondence suggests
a reinterpretation (and generalization) of the notions introduced in [11]:

Equational Systems [11] Monoidal Category Ê
iterated equational system (IES) monoid M̂ ∈ Mon(Ê)

functorial signature F (IES with n = 0) object F ∈ E
category F -Alg of F -algebras free monoid F ∗ over F
functorial term T of arity D map op : D - U(M̂)

adding an equation to an IES taking a quotient of M̂

IES ` T1 = T2 : D D
op1 -

op2

- M̂ - N̂

Future Work. A topic of future work is to investigate the use of free construc-
tions for equational systems in defining strong monad transformers that add to
a pre-existing monad new operations satisfying certain equations (Example 4.9
should be an instance of this). Another line of research, already mentioned in
the Introduction, is the use of monoid transformers for an incremental approach
for arrows [14] (viewed as monoids [13]) or other generalizations of monads
proposed in the literature.
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