Towards Operations on Operational Semantics

Mauro Jaskelioff
mjj@cs.nott.ac.uk
School of Computer Science \& IT
The University of
Nottingham

$22^{\text {nd }}$ British Colloquium for Theoretical Computer Science

The Context

- We need semantics to reason about programs.
- Operational semantics is a popular way of giving semantics to languages.
- Languages evolve over time and need to be extended.
- We want to use what we alredy knew to reason about the extended language.
- However, operational semantics have poor modularity.

Modularity in SOS

- An arithmetics language

$$
a::=C o n n \mid \text { Add a a }
$$

where n ranges over \mathbb{Z}.

Modularity in SOS

- An arithmetics language

$$
a::=C o n n \mid \text { Add a a }
$$

where n ranges over \mathbb{Z}.

- An exceptions language

$$
e::=\text { Throw } \mid \text { Catch e e }
$$

$\overline{\text { Throw } \Downarrow \text { Nothing }} \quad \frac{t \Downarrow \text { Just } x}{\text { Catch } t u \Downarrow \text { Just } x} \quad \frac{t \Downarrow \text { Nothing } u \Downarrow y}{\text { Catch } t u \Downarrow y}$

A Combined Language

$t::=$ Con $n \mid$ Add $t t \mid$ Throw \mid Catch $t t$

A Combined Language

$t::=$ Con $n \mid$ Add $t t \mid$ Throw \mid Catch $t t$
$\frac{t \Downarrow x \quad u \Downarrow y}{\text { Con } x \Downarrow \text { Just } x} \quad \frac{t}{\text { Add } t u \Downarrow \text { Just }(x+y)}$
$\overline{\text { Throw } \Downarrow \text { Nothing }} \quad \frac{t \Downarrow \text { Just } x}{\text { Catch } t u \Downarrow \text { Just } x} \quad \frac{t \Downarrow \text { Nothing } u \Downarrow y}{\text { Catch } t u \Downarrow y}$
$\frac{t \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }} \quad \frac{u \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }}$

A Combined Language

$t::=$ Con $n \mid$ Add $t t \mid$ Throw \mid Catch $t t$
$\frac{t \Downarrow x \quad u \Downarrow y}{\text { Con } x \Downarrow \text { Just } x} \quad \frac{t}{\text { Add } t u \Downarrow \text { Just }(x+y)}$
$\overline{\text { Throw } \Downarrow \text { Nothing }} \quad \frac{t \Downarrow \text { Just } x}{\text { Catch } t u \Downarrow \text { Just } x} \quad \frac{t \Downarrow \text { Nothing } u \Downarrow y}{\text { Catch } t u \Downarrow y}$
$\frac{t \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }} \quad \frac{u \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }}$

- What is the relation between this semantics and the previous ones?

A Combined Language

$t::=$ Con $n \mid$ Add $t t \mid$ Throw \mid Catch $t t$
$\frac{t \Downarrow x \quad u \Downarrow y}{\text { Con } x \Downarrow \text { Just } x} \quad \frac{\text { Add } t u \Downarrow \text { Just }(x+y)}{}$
$\overline{\text { Throw } \Downarrow \text { Nothing }} \quad \frac{t \Downarrow \text { Just } x}{\text { Catch } t u \Downarrow \text { Just } x} \quad \frac{t \Downarrow \text { Nothing } u \Downarrow y}{\text { Catch } t u \Downarrow y}$
$\frac{t \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }} \quad \frac{u \Downarrow \text { Nothing }}{\text { Add } t u \Downarrow \text { Nothing }}$

- What is the relation between this semantics and the previous ones?
- Can we obtain rules that just propagate Nothing for free?

Functorial Operational Semantics

- Abstract formulation of operational semantics using category theory.
- Rules of SOS are expressed in terms of
- The signature Σ (set of operations)
- The observable behaviour B

That is,

$$
\mathcal{R}(\Sigma, B)
$$

D. Turi. and G. Plotkin. Towards a mathematical operational semantics. 12th LICS Conf., 1997.

What if. . .

... we have some operations on rules $\mathcal{R}(\Sigma, B)$ such that:

What if. . .

... we have some operations on rules $\mathcal{R}(\Sigma, B)$ such that:

- We could join to languages with different signatures, but same behaviour.

$$
\text { join: }\left(\mathcal{R}(\Sigma, B),\left(\mathcal{R}\left(\Sigma^{\prime}, B\right)\right)\right) \rightarrow \mathcal{R}\left(\Sigma+\Sigma^{\prime}, B\right)
$$

What if. . .

... we have some operations on rules $\mathcal{R}(\Sigma, B)$ such that:

- We could join to languages with different signatures, but same behaviour.

$$
\text { join: }\left(\mathcal{R}(\Sigma, B),\left(\mathcal{R}\left(\Sigma^{\prime}, B\right)\right)\right) \rightarrow \mathcal{R}\left(\Sigma+\Sigma^{\prime}, B\right)
$$

- We could lift a rule to some effect F.

$$
\text { lift : } \mathcal{R}(\Sigma, B) \rightarrow \mathcal{R}(\Sigma, F \cdot B)
$$

What if. . .

... we have some operations on rules $\mathcal{R}(\Sigma, B)$ such that:

- We could join to languages with different signatures, but same behaviour.

$$
\text { join: }\left(\mathcal{R}(\Sigma, B),\left(\mathcal{R}\left(\Sigma^{\prime}, B\right)\right)\right) \rightarrow \mathcal{R}\left(\Sigma+\Sigma^{\prime}, B\right)
$$

- We could lift a rule to some effect F.

$$
\text { lift: } \mathcal{R}(\Sigma, B) \rightarrow \mathcal{R}(\Sigma, F \cdot B)
$$

- We could construct rules with behaviour F. B that are well-defined for any B.

$$
\rho_{\tau}: \forall B \cdot \mathcal{R}(\Sigma, F \cdot B)
$$

Then we could. . .

...answer the previous questions.
Semantics of arithmetics:

$$
\rho_{A}: \mathcal{R}\left(\Sigma_{A}, K_{\mathbb{Z}}\right)
$$

Semantics of exceptions:

$$
\rho_{\tau}: \forall B \cdot \mathcal{R}\left(\Sigma_{E}, \text { Maybe } \cdot B\right)
$$

with Maybe $X=1+X$

Then we could. . .

...answer the previous questions.
Semantics of arithmetics:

$$
\rho_{A}: \mathcal{R}\left(\Sigma_{A}, K_{\mathbb{Z}}\right)
$$

Semantics of exceptions:

$$
\rho_{\tau}: \forall B \cdot \mathcal{R}\left(\Sigma_{E}, \text { Maybe } \cdot B\right)
$$

with Maybe $X=1+X$
$\frac{\frac{\rho_{A}: \mathcal{R}\left(\Sigma_{A}, K_{\mathbb{Z}}\right)}{\operatorname{lift}\left(\rho_{A}\right): \mathcal{R}\left(\Sigma_{A}, \text { Maybe } \cdot K_{\mathbb{Z}}\right)} \quad \frac{\rho_{\tau}: \forall B \cdot \mathcal{R}\left(\Sigma_{E}, \text { Maybe } \cdot B\right)}{\rho_{\tau_{K}}: \mathcal{R}\left(\Sigma_{E}, \text { Maybe } \cdot K_{\mathbb{Z}}\right)}}{\operatorname{join}\left(\rho_{A}, \rho_{\tau_{K}}\right): \mathcal{R}\left(\Sigma_{A}+\Sigma_{E}, \text { Maybe } \cdot K_{\mathbb{Z}}\right)}$

Abstract Operational Rules

Our rules $\mathcal{R}(\Sigma, B)$, are actually abstract operational rules, natural transformations

$$
\rho: \Sigma \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma}
$$

where

- T_{Σ} is the free monad on the signature Σ. ($T_{\Sigma} X$ is the set of terms with variables from X.)

$$
\rho_{X}: \Sigma \cdot(X \times B X) \rightarrow\left(B \cdot T_{\Sigma}\right) X
$$

Abstract Operational Rules

Our rules $\mathcal{R}(\Sigma, B)$, are actually abstract operational rules, natural transformations

$$
\rho: \Sigma \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma}
$$

where

- T_{Σ} is the free monad on the signature Σ. ($T_{\Sigma} X$ is the set of terms with variables from X.)

$$
\rho_{X}: \Sigma \cdot(X \times B X) \rightarrow\left(B \cdot T_{\Sigma}\right) X
$$

Example: One rule for a binary sequence operator

$$
\begin{gathered}
(;): X \times X \rightarrow X \\
\frac{t \xrightarrow{a} t^{\prime}}{t ; u \xrightarrow{a} t^{\prime} ; u} \quad \Rightarrow \quad \begin{array}{l}
((X \times B X) \times(X \times B X)) \rightarrow\left(B \cdot T_{\Sigma}\right) X \\
(;)\left(\left(t,\left\langle a, t^{\prime}\right\rangle\right) \times(u,-)\right) \rightarrow\left\langle a, t^{\prime} ; u\right\rangle
\end{array}
\end{gathered}
$$

Joining Rules

join puts together two languages with different signatures, but same behaviour.

$$
\begin{aligned}
& \rho: \Sigma \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma} \quad \rho^{\prime}: \Sigma^{\prime} \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma^{\prime}} \\
& \text { join }\left(\rho, \rho^{\prime}\right) \text { : }\left(\Sigma+\Sigma^{\prime}\right) \cdot(I d \times B) \\
& =\{\text { Coproduct of Functors \}} \\
& \Sigma \cdot(l d \times B)+\Sigma^{\prime} \cdot(I d \times B) \\
& \rightarrow \quad\left\{\rho+\rho^{\prime}\right\} \\
& B \cdot T_{\Sigma}+B \cdot T_{\Sigma^{\prime}} \\
& \rightarrow \quad\{[\text { Binl }+ \text { Binr }]\} \\
& B \cdot\left(T_{\Sigma}+T_{\Sigma^{\prime}}\right) \\
& \rightarrow \quad\{\mathrm{B}[\text { fold }(\text { inl, inr.inl),fold (inl,inr.inr)] \} } \\
& B \cdot\left(T_{\Sigma+\Sigma^{\prime}}\right)
\end{aligned}
$$

Lifting Rules

lift lifts a rule with behaviour B to a behaviour $F \cdot B$.

- For F strong and a distributivity law $\Sigma \cdot F \rightarrow F \cdot \Sigma$

$$
\begin{array}{rlc}
\rho & : & \Sigma \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma} \\
\hline \text { lift }_{F} \rho & : & \Sigma \cdot(I d \times F \cdot B) \\
& \rightarrow & \{\text { strength of } F\} \\
& & \Sigma \cdot F \cdot(I d \times B) \\
& & \{\text { distributivity law }\} \\
& \rightarrow & \{F \cdot(I d \times B) \\
& & \left.F \cdot B \cdot T_{\Sigma}\right\}
\end{array}
$$

Lifting Rules

lift lifts a rule with behaviour B to a behaviour $F \cdot B$.

- For F strong and a distributivity law $\Sigma \cdot F \rightarrow F \cdot \Sigma$

$$
\begin{array}{rlc}
\rho & : & \Sigma \cdot(I d \times B) \rightarrow B \cdot T_{\Sigma} \\
\hline \text { lift }_{F} \rho & : & \Sigma \cdot(I d \times F \cdot B) \\
& \rightarrow & \{\text { strength of } F\} \\
& & \Sigma \cdot F \cdot(I d \times B) \\
& & F \cdot \Sigma \cdot(I d \times B) \\
& \rightarrow & \{F \rho\} \\
& & F \cdot B \cdot T_{\Sigma}
\end{array}
$$

- if F is applicative and Σ traversable, we obtain the strength and distributivity law for free.
- For simple signatures and all monadic effects, we get "propagation rules" for free.

Rule Transformers

- A rule transformer is a mapping from a behaviour B to a rule $\rho_{\tau}: \Sigma \cdot(I d \times F \cdot B) \rightarrow F \cdot B \cdot T_{\Sigma}$.

Rule Transformers

- A rule transformer is a mapping from a behaviour B to a rule $\rho_{\tau}: \Sigma \cdot(I d \times F \cdot B) \rightarrow F \cdot B \cdot T_{\Sigma}$.
- They can be generated from a transformer germ: a natural transformation $\tau: \Sigma \cdot F \rightarrow F$.

	$\tau: \Sigma \cdot F \rightarrow F$	
ρ_{τ}	$: \Sigma \cdot(l d \times F \cdot B)$	
	\rightarrow	$\left\{\Sigma \pi_{2}\right\}$
		$\Sigma \cdot F \cdot B$
		$\left\{\tau_{B}\right\}$
		$\{(F \cdot B) \eta\}$
		$F \cdot B \cdot T_{\Sigma}$

Lifting T to D-coalgebras

Functorial operational semantics are a distributivity law

$$
\lambda: T \cdot D \rightarrow D \cdot T
$$

between

- a monad T (corresponding to syntax)
- a comonad D (corresponding to behaviours)

Equivalently, a lifting \tilde{T} of T to the D-coalgebras:
For all $k: X \rightarrow D X$,

$$
\tilde{T}(k): T X \rightarrow D(T X)
$$

To execute a program (a closed term $T \emptyset$) we unfold $\tilde{T}(e): T \emptyset \rightarrow D(T \emptyset)$, where $e: \emptyset \rightarrow D \emptyset$.

Summary

- We can easily reason about operational semantics by working in the abstract (category-theoretical) setting of functorial operational semantics.
- We can build complex semantics out of simpler building blocks, using operations on abstract operational rules (but with some limitations.)
- Future Work
- Broaden the class of languages that we can represent (variable binding).
- Construct more powerful operations to combine two languages (instead of transforming one.)

Thanks for listening

Haskell code will be available for downloading at http://www.cs.nott.ac.uk/~mjj/

