
ZU064-05-FPR main 20 September 2017 18:33

Under consideration for publication in J. Functional Programming 1

Notions of Computation as Monoids

EXEQUIEL RIVAS MAURO JASKELIOFF
Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas
CONICET, Argentina FCEIA, Universidad Nacional de Rosario, Argentina

Abstract

There are different notions of computation, the most popular being monads, applicative functors, and
arrows. In this article we show that these three notions can be seen as instances of a unifying abstract
concept: monoids in monoidal categories. We demonstrate that even when working at this high level
of generality one can obtain useful results. In particular, we give conditions under which one can
obtain free monoids and Cayley representations at the level of monoidal categories, and we show
that their concretisation results in useful constructions for monads, applicative functors, and arrows.
Moreover, by taking advantage of the uniform presentation of the three notions of computation, we
introduce a principled approach to the analysis of the relation between them.

1 Introduction

When constructing a semantic model of a system or when structuring computer code, there
are several notions of computation that one might consider. Monads (Moggi, 1989; Moggi,
1991) are the most popular notion, but other notions, such as arrows (Hughes, 2000)
and, more recently, applicative functors (McBride & Paterson, 2008) have been gaining
widespread acceptance.

Each of these notions of computation has particular characteristics that makes them more
suitable for some tasks than for others. Nevertheless, there is much to be gained from
unifying all three different notions under a single conceptual framework.

In this article we show how all three of these notions of computation can be cast as
monoids in monoidal categories. Monads are known to be monoids in a monoidal category
of endofunctors (Mac Lane, 1971; Barr & Wells, 1985). Moreover, strong monads are
monoids in a monoidal category of strong endofunctors. Arrows have been recently shown
to be related to monoids in a monoidal category of profunctors by Jacobs et al. (2009).
Applicative functors, on the other hand, are usually presented as lax monoidal functors with
a compatible strength (McBride & Paterson, 2008; Jaskelioff & Rypacek, 2012; Paterson,
2012). However, in the category-theory community, it is known that lax monoidal functors
are monoids with respect to the Day convolution (Day, 1970), and hence applicative func-
tors are also monoids in a monoidal category of endofunctors using the Day convolution
as a tensor.

Therefore, we unify the analysis of three different notions of computation, namely mon-
ads, applicative functors, and arrows, by looking at them as monoids in a monoidal cate-
gory. In particular, we make explicit the relation between applicative functors and monoids

ZU064-05-FPR main 20 September 2017 18:33

2 E. Rivas and M. Jaskelioff

with respect to the Day convolution, and we simplify the characterisation of arrows so
that arrows are exactly monoids in a monoidal category. Unlike the approach to arrows of
Jacobs et al. (2009), where the operation first is added on top of the monoid structure, we
obtain that operation from the monoidal structure of the underlying category. Furthermore,
we show that at the level of abstraction of monoidal categories one can obtain useful results,
such as free constructions and Cayley representations.

Free constructions are often used in programming in order to represent abstract syntax
trees. For instance, free constructions are used to define deep embeddings of domain-
specific languages (Swierstra & Altenkirch, 2007). Traditionally, one uses a free monad
to represent abstract syntax trees, with the bind operation (Kleisli extension) acting as a
form of simultaneous substitution. However, in certain cases, the free applicative functor
is a better fit (Capriotti & Kaposi, 2014). The free arrow, on the other hand, has been less
well explored and we know of no publication that has an implementation of it.

The Cayley representation theorem states that every group is isomorphic to a group of
permutations (Cayley, 1854). Hence, one can work with a concrete group of permutations
instead of working with an abstract group. The representation theorem does not really use
the inverse operation of groups so one can generalise the representation to monoids and
obtain a Cayley representation theorem for monoids (Jacobson, 2009).

In functional programming, the Cayley theorem appears as an optimisation by change
of representation. We identify two known optimisations, namely difference lists (Hughes,
1986), and the codensity monad transformation (Voigtländer, 2008; Hutton et al., 2010) as
being essentially the same, since both are instances of the general Cayley representation of
monoids in a monoidal category. Moreover, we obtain novel transformations for applicative
functors and arrows by analysing their Cayley representations.

Given the three notions of computation, one may ask what are the relations between
them. Lindley et al. (2011) address this question by studying the equational theories in-
duced by calculi capturing each notion of computation. If, on the other hand, we want
to address the question by taking a categorical approach, one should study the relation
between the different categories of monads, applicative functors, and arrows. Since the
three notions are monoids in a monoidal category, this is the same as studying the relation
between the corresponding categories of monoids. However, as a consequence of having
a unified view we can ask a simpler, more basic question instead and analyse the relation
between the different monoidal categories that give support to monoids. Then, we obtain
the relation between their monoids as a corollary.

Concretely, the article makes the following contributions:

• We present a unified view of monads, applicative functors, and arrows as monoids in
a monoidal category. Although most of these results are known in other communities,
the case of the applicative functors as monoids seems to have been overlooked in the
functional programming community, and in the case of arrows, the existing models
were not an exact fit.

• We show how the Cayley representation of monoids unifies two different known
optimisations, namely difference lists and the codensity monad transformation. The
similarity between these two optimisations has been noticed before, but now we

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 3

make the relation precise and demonstrate that they are two instances of the same
change of representation.

• We apply the characterisation of applicative functors as monoids to obtain a free
construction and a Cayley representation for applicative functors. In this way, we
clarify the construction of free applicative functors as explained by Capriotti and
Kaposi (2014). The Cayley representation for applicative functors is entirely new.

• We clarify the view of arrows as monoids by incorporating their strength in the
supporting monoidal category. In previous approaches, such strength was an extra
operation attached to the monoids, while in this article we consider a category with
strong profunctors. Our approach leads to a new categorical model of arrows and to
the first formulation of free arrows.

• We analyse the relation between the monoidal categories that give rise to monads,
applicative functors, and arrows, by constructing monoidal functors between them.

• We give canonical constructions for converting profunctors into strong profunctors,
one which can be used to convert weak arrows (arrows without the operation first)
into arrows.

The rest of the article is structured as follows. In Section 1 we introduce the Cay-
ley representation for ordinary monoids. In Section 2, we introduce monoidal categories,
monoids, free monoids and the Cayley representation for monoids in a monoidal category.
In Section 3, we instantiate these constructions in a category of endofunctors, with com-
position as a tensor and obtain monads, free monads, and the Cayley representation for
monads. In Section 5, we do the same for applicative functors. Before that, we introduce
in Section 4 the notions of ends and coends needed to define and work with the Day
convolution. In Section 6, we work in a category of profunctors to obtain weak arrows, their
free constructions, and their Cayley representations. In Section 7, we turn to arrows, and
construct free arrows. Finally, in Section 8, we analyse the relation between the different
monoidal categories considered in the previous sections, provide canonical constructions
for adding a strength to profunctors, and obtain a representation for arrows. We conclude
in Section 9 where we summarise our results and discuss related work.

The article is aimed at functional programmers with knowledge of basic category theory
concepts, such as categories, functors, limits, adjunctions, and initial algebra semantics.
We provide an introduction to more advanced concepts, such as monoidal categories, ends
and coends.

In frames like the one surrounding this paragraph, we include implementations in
Haskell of several of the categorical concepts of the article. The idea is not to formalise
these concepts in Haskell, but rather to show how the category theory informs and
guides the implementation. Nevertheless, one can prove that the implementation of the
different concepts is correct using “fast and loose” reasoning (Danielsson et al., 2006).

An extended version of the article that includes proofs and additional technical details is
available from the authors’ web pages.

ZU064-05-FPR main 20 September 2017 18:33

4 E. Rivas and M. Jaskelioff

Cayley representation for monoids

We start by stating the Cayley representation theorem for ordinary monoids, i.e. monoids
in the category Set of sets and functions. A monoid is a triple (M,⊕,e) of a set M, a
binary operation ⊕ : M×M→M which is associative ((a⊕b)⊕ c = a⊕ (b⊕ c)), and an
element e ∈ M which is a left and right identity with respect to the binary operation (i.e.
e⊕a = a = a⊕e.) Because of the obvious monoid (N, ·,1), the binary operation⊕ and the
element e are often called the multiplication and unit of the monoid.

For every set M we may construct the monoid of endomorphisms (M→M,◦, id), where
◦ is function composition and id is the identity function.

Up to an isomorphism, M is a sub-monoid of a monoid (M′,⊕′,e′) if there is an injection
i : M ↪→M′ such that i(e) = e′ and i(a⊕b) = i(a)⊕′ i(b) for some ⊕ and e. The existence
of such an i makes (M,⊕,e) a monoid and i a monoid morphism.

Theorem 1.1 (Cayley representation for (Set) monoids)
Every monoid (M,⊕,e) is a sub-monoid of the monoid of endomorphisms on M.

Proof We construct an injection rep : M→ (M→M) by currying the binary operation ⊕.

rep(m) = λm′.m⊕m′.

The function rep is a monoid morphism:

rep(e) = λm′.e⊕m′

= id

rep(a⊕b) = λm′.(a⊕b)⊕m′

= λm′.a⊕ (b⊕m′)
= (λm.a⊕m)◦ (λn.b⊕n)
= rep(a)◦ rep(b)

Moreover, rep is an injection, since we have a function abs : (M→M)→M given by

abs(k) = k(e)

and, abs(rep(m)) = (λm′.m⊕m′)e = m⊕ e = m.
ut

When M lifts to a group (i.e. it has a compatible inverse operation), then the monoid of
endomorphisms on M lifts to the traditional Cayley representation of a group M.

How can we use this theorem in Haskell? Lists are monoids ([a],++, []) so we may
apply Theorem 1.1. Let us define a type synonym for the monoid of endomorphisms:

type EList a = [a]→ [a]

The functions rep and abs, following the proof of Theorem 1.1, are:

rep :: [a]→ EList a
rep xs = (λys→ xs++ ys)

abs :: EList a→ [a]
abs xs = xs []

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 5

By the theorem above, we have that abs ◦ rep = id. The type EList a is no other
than difference lists (Hughes, 1986). Concatenation for standard lists is slow, as it is
linear in the first argument. A well known solution is to use a different representation of
lists: the so-called “difference lists” or “Hughes’ lists”, in which lists are represented by
endofunctions of lists. For difference lists, concatenation is implemented by function
composition, and the empty list is implemented by the identity function. Hence we
can perform efficient concatenations on difference lists, and when we are done we can
recover standard lists by applying to the empty list.

2 Monoidal Categories

The notion of monoid in the category Set of sets and functions is too restrictive for express-
ing monads, applicative functors, and arrows, so we are interested in generalising monoids
to other categories. In order to express a monoid, a category should have a notion of

1. a pairing operation for expressing the type of the multiplication,
2. and a type for expressing the unit.

In Set (in fact, in any category with finite products), we may define a binary operation on
X as a function X×X → X , and the unit as a morphism 1→ X . However, a given category
C may not have finite products, or we may be interested in other monoidal structure of
C , so we will be more general and we will abstract the product by a ⊗ operation called a
tensor, and the unit 1 by an object I of C . Categories with a tensor ⊗ and unit I have the
necessary structure for supporting an abstract notion of monoid and are known as monoidal
categories.

Definition 2.1 (Monoidal Category)
A monoidal category is a tuple (C ,⊗, I,α,λ ,ρ), consisting of

• a category C ,
• a bifunctor ⊗: C ×C → C ,
• an object I of C ,
• natural isomorphisms αA,B,C : A ⊗ (B ⊗ C)→ (A ⊗ B) ⊗ C, λA : I ⊗ A→ A, and

ρA : A⊗ I→ A such that the following diagrams commute.

A⊗ (B⊗ (C ⊗ D))
α //

id⊗α

��

(A⊗ B)⊗ (C ⊗ D)
α // ((A⊗ B)⊗C)⊗ D

A⊗ ((B⊗C)⊗ D)
α

// (A⊗ (B⊗C))⊗ D

α⊗id

OO

A⊗ (I ⊗ B) α //

id⊗λ &&

(A⊗ I)⊗ B

ρ⊗idxx
A⊗ B

A monoidal category is said to be strict when the natural isomorphisms α , λ and ρ are
identities. Note that in a strict monoidal category the diagrams necessarily commute.

ZU064-05-FPR main 20 September 2017 18:33

6 E. Rivas and M. Jaskelioff

A symmetric monoidal category, is a monoidal category with an additional natural iso-
morphism γA,B : A⊗ B→ B⊗ A subject to some coherence conditions (Mac Lane, 1971).

The idea of currying a function can be generalised to a monoidal category with the
following notion of exponential.

Definition 2.2 (Exponential)
Let A be an object of a monoidal category (C ,⊗, I,α,λ ,ρ). A right exponential −A is
the right adjoint to − ⊗ A. That is, the right exponential to A is characterised by an
isomorphism

b·c : C (X ⊗ A,B)∼= C (X ,BA) : d·e
natural in X and B. We call the counit of the adjunction evB = didBAe : BA ⊗ A→ B the
evaluation morphism of the right exponential. Note that b·c generalises currying, and d·e
generalises uncurrying.

Similarly, a left exponential is the right adjoint to A ⊗ −. In the rest of the paper we
consider only right exponentials, and call them simply exponentials. When the exponential
to A exists, we say that A is an exponent. When the exponential exists for every object
we say that the monoidal category has exponentials or that it is a right-closed monoidal
category.

When working on the category Set, we will write the exponential BA simply as A→ B,
which coincides with the set Set(A,B) of morphisms between A and B.

2.1 Monoids in Monoidal Categories

With the definition of monoidal category in place we may define monoids.

Definition 2.3 (Monoid)
A monoid in a monoidal category (C ,⊗, I,α,λ ,ρ) is a tuple (M,m,e) where M ∈ C and
m and e are morphisms in C

I e // M M ⊗Mmoo

such that the following diagrams commute.

(M ⊗M)⊗M
m⊗id // M ⊗M

m

��
M ⊗ (M ⊗M)

α

OO

id⊗m
// M ⊗M m

// M

M ⊗M
m

%%

M ⊗ I
id⊗eoo

ρ

��
I ⊗M

e⊗id

OO

λ

// M

Given two monoids (M1,m1,e1) and (M2,m2,e1), a monoid homomorphism between
them is an arrow f : M1→M2 in C such that the following diagram commutes.

M1

f

��

M1 ⊗M1
m1oo

f⊗ f

��

I

e1
55

e2)) M2 M2 ⊗M2m2
oo

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 7

Monoids in a monoidal category C together with monoid homomorphisms form the
category Mon(C).

For ordinary monoids one has the notion of free monoid over a set X , which consists of
the set of words (or, equivalently lists) over X . This notion can be generalised to monoidal
categories as follows:

Definition 2.4 (Free Monoid)
Let (C ,⊗, I,α,λ ,ρ) be a monoidal category. The free monoid over an object X in C is
a monoid (F,mF ,eF) together with a morphism ins : X → F such that for any monoid
(G,mG,eG) and any morphism f : X → G, there exists a unique monoid homomorphism
free f : F → G that makes the following diagram commute.

X ins //

f
##

F

free f

��
G

The morphism ins is called the insertion of generators into the free monoid.

There is a forgetful functor U : Mon(C)→ C which forgets the monoid structure and
maps a monoid (M,m,e) to M. When the left-adjoint (−)∗ to U exists, it maps an object
X to the free monoid on X . There are several conditions that guarantee the existence of
free monoids (Dubuc, 1974; Kelly, 1980; Lack, 2010). Of particular importance to us is
the following proposition, which generalises the construction of free monoid in Set as the
set of words.

Proposition 2.5
Let (C ,⊗, I,α,λ ,ρ) be a monoidal category with exponentials. If C has binary coprod-
ucts, and for each A ∈ C the initial algebra for the endofunctor I +A ⊗ − exists, then for
each A the monoid A∗ exists and its carrier is the carrier of the initial algebra, which we
write as µX . I +A⊗X .

In the proposition, the exponentials play a fundamental role, as they are needed to
define the multiplication on the carrier. More explicitly, the isomorphism that characterises
exponentials allow us to define the multiplication of the monoid by giving a morphism with
domain A∗:

m : A∗ ⊗ A∗→ A∗ = dh : A∗→ A∗A∗ e
Because A∗A∗ carries an (I+A⊗−)-algebra structure, we can define the morphism h using
initiality of A∗.

It is well known that the free monoid over a set A is the set of lists of A.
Unsurprisingly, when implementing in Haskell the formula of Proposition 2.5 for the
case of Set monoids, where ⊗ is pairing, and I is the unit type, we obtain lists.

data List a = Nil | Cons (a,List a)

ZU064-05-FPR main 20 September 2017 18:33

8 E. Rivas and M. Jaskelioff

Definition 2.6 (Sub-monoid)
Given a monoid (M,e,m) in C , and a monic i : M′ ↪→M in C , such that for some (unique)
maps e′ and m′, we have a commuting diagram

M M ⊗Mmoo

I

e′))

e
55

M′

i

OO

M′ ⊗M′

i⊗i

OO

m′
oo

then (M′,e′,m′) is a monoid, called the sub-monoid of M induced by the monic i, and i is
a monoid monomorphism from M′ to M. Equivalently, a sub-monoid of M is given by a
monic monoid homomorphism.

2.2 Cayley Representation of a Monoid

Every exponent in a monoidal category induces a monoid of endomorphisms:

Definition 2.7 (Monoid of endomorphisms)
Let (C ,⊗, I,α,λ ,ρ) be a monoidal category. The monoid of endomorphisms on any expo-
nent A ∈ C is given by the diagram

I
iA // AA AA ⊗ AAcAoo

where

iA = b I ⊗ A
λA // A c

cA = b (AA ⊗ AA)⊗ A α−1
// AA ⊗ (AA ⊗ A)

idAA⊗evA // AA ⊗ A
evA // A c

Here iA stands for identity and cA for composition.

The Cayley representation theorem tells us that every monoid (M,m,e) in a monoidal
category is a sub-monoid of a monoid of endomorphisms whenever M is an exponent.

Theorem 2.8 (Cayley)
Let (C ,⊗, I,α,λ ,ρ) be a monoidal category, and let (M,e,m) be a monoid in C . If M is an
exponent then (M,e,m) is a sub-monoid of the monoid of endomorphisms (MM,cM, iM),
as witnessed by the monic rep = bmc : M ↪→ MM . Moreover, rep is split monic with left
inverse abs (i.e. abs◦ rep = idM) given by

abs = MM
ρ
−1
MM //MM ⊗ I

idMM⊗e
//MM ⊗M

evM //M

The Cayley theorem for sets (Theorem 1.1) is an instance of this theorem for the category
Set. As new monoidal categories are introduced in the following sections, more instances
will be presented.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 9

3 Monads as Monoids

For any two categories C and D we have a category [C ,D] with functors from C to D

as objects and natural transformations as morphisms. Therefore, endofunctors on Set form
the category [Set,Set].

Endofunctors are implemented in Haskell by the following type class:

class Functor f where
fmap :: (a→ b)→ f a→ f b

Natural transformations are implemented by the following type:

type f q−→ g = ∀x. f x→ g x

In Section 4 we will explain why this is a good implementation of natural
transformations.

Consider the (strict) monoidal category Endo◦ = ([Set,Set],◦, Id) of endofunctors on
Set, functor composition and the identity functor. A monoid in this category consists of

• an endofunctor M,
• a natural transformation m : M ◦M→M,
• and a unit e : Id→M; such that the diagrams

(M ◦M)◦M mM // M ◦M

m

��
M ◦ (M ◦M)

Mm
// M ◦M m

// M

M ◦M
m

%%

M ◦ Id
Meoo

Id◦M

eM

OO

M

commute.

Hence, a monoid in Endo◦ is none other than a monad, leading to the following often-
heard slogan: A monad is a monoid in a category of endofunctors.

The monoidal structure of Endo◦ is given in terms of the identity functor and the
composition of functors, which are implemented in Haskell by the datatypes:

data Id a = Id a

data (f ◦g) a = Comp (f (g a))

with the obvious Functor instances. A monoid in Endo◦ is implemented by a Functor m,
a multiplication m ◦m q−→ m and a unit Id

q−→ m. We capture these requirements in the
type class Triple where, for ease of use, we have unfolded the definitions of natural
transformation, identity functor, and functor composition.

class Functor m⇒ Triple m where

η :: a→ m a
join :: m (m a)→ m a

ZU064-05-FPR main 20 September 2017 18:33

10 E. Rivas and M. Jaskelioff

We have called the type class Triple in order not to clash with standard nomenclature in
Haskell which uses the name Monad for the presentation of a monad through its Kleisli
extension.

class Monad m where

return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

The latter has the advantage of not needing a Functor instance and of being easier to
use when programming. The two presentations are equivalent, as one can be obtained
from the other by taking η = return, join = (>>=id), and (>>=f) = join◦ fmap f .

Monads for notions of computation should be strong (Moggi, 1989). In general, a functor
is said to be strong when it interacts coherently with the monoidal structure.

Definition 3.1
An endofunctor F : C →C is strong when it comes equipped with a natural transformation

stX ,Y : F(X)⊗ Y → F(X ⊗ Y)

called a strength, such that the following diagrams commute.

FX ⊗ I

st

��

ρ

$$
F(X ⊗ I)

F(ρ)
// FX

FX ⊗ (Y ⊗ Z) st //

α

��

F(X ⊗ (Y ⊗ Z))

F(α)

��
(FX ⊗ Y)⊗ Z

st⊗id
// F(X ⊗ Y)⊗ Z

st
// F((X ⊗ Y)⊗ Z)

All endofunctors on the (cartesian) monoidal category Set come with a unique strength,
so all functors in [Set,Set] are strong. As we are always interested in this kind of functors,
we do not mention the strength explicitly.

The Haskell implementation of the unique strength for functors is the following.

st :: Functor f ⇒ f a→ b→ f (a,b)
st v b = fmap (λa→ (a,b)) v

A monad is said to be strong when the monadic structure interacts coherently with the
strength. In the case of functors in [Set,Set], we get this coherence for free.

3.1 Exponentials in Endo◦

Finding an exponential in Endo◦ means finding a functor (−)F , such that we have an
isomorphism natural in G and H:

Nat(H ◦F ,G) ∼= Nat(H,GF) (3.1)

where we write Nat(F,G) instead of [C ,D](F,G) for the collection of natural transforma-
tions between F and G.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 11

A useful technique for finding exponentials such as GF in a functor category is to turn
to the famous Yoneda Lemma.

Theorem 3.2 (Yoneda)
Let C be a locally small category (i.e. a category such that the collection of morphisms
between any two objects is a set). Then, there is an isomorphism

F X ∼= Nat(C (X ,−),F)

natural in object X : C and functor F : C → Set. That is, the set F X is naturally isomorphic
to the set of natural transformations between the functor C (X ,−) and the functor F .

Now, if an exponential GF exists in the strict monoidal category ([Set,Set],◦, Id), then
the following must hold:

GF X ∼= Nat(X →−,GF)
∼= Nat((X →−)◦F ,G)

= Nat(X → F−,G)

where the first isomorphism is by Yoneda, and the second is by equation 3.1. Therefore,
whenever the expression Nat(X → F−,G) makes sense, it can be taken to be the definition
of the exponential GF . Making sense in this case means that the collection of natural
transformations between X → F− and G is a set. The collection Nat(F,G) of natural
transformation between two Set endofunctors F and G is not always a set, i.e. [Set,Set]

is not locally small. However, a sufficient condition for Nat(F,G) to be a set is for F
to be small. Small functors (Day & Lack, 2007) are endofunctors on Set which have a
particular size restriction (they must be a left Kan extension along the inclusion from
a small subcategory.) For example, container functors (Abbott et al., 2003) and finitary
functors (Kelly & Power, 1993) are small. Intuitively, this means that a small functor is
essentially a functor from a small category, and therefore certain size problems do not
occur. If F is a small functor, then Nat(F,G) is a set, and by the reasoning above the
functor F is an exponent in Endo◦, with exponential (−)F given by

GF X = Nat(X → F−,G)

Remark 3.3
Equation 3.1 means that the exponential (−)F is a right adjoint to the functor (−◦F). This
exponential is known as the right Kan extension along F .

The Haskell implementation of the exponential with respect to functor composition is
the following.

data Exp f g x = Exp (∀y. (x→ f y)→ g y)

The components of isomorphism 3.1 are:

b·c :: Functor h⇒ (∀x. h (f x)→ g x)→ h y→ Exp f g y
btc y = Exp (λk→ t (fmap k y))

d·e :: (∀y. h y→ Exp f g y)→ h (f x)→ g x
dte x = let Exp g = t x in g id

ZU064-05-FPR main 20 September 2017 18:33

12 E. Rivas and M. Jaskelioff

3.2 Free Monads

A finitary endofunctor on Set is an endofunctor whose image is described by its action on
finite sets. A finitary endofunctor is a particular kind of small functor, as it is equivalent
to a left Kan extension of its domain restriction to the category of finite sets along the
inclusion. By restricting Endo◦ to finitary endofunctors we obtain the locally small, right-
closed monoidal category EndoFin

◦ (Kelly & Power, 1993). In this category, we may apply
Proposition 2.5 and obtain the usual formula for the free monad of an endofunctor F .

F∗ ∼= Id+F ◦F∗

The same formula instantiated on an object X yields:

F∗X ∼= X +F(F∗X)

The formula above can be readily implemented by the datatype:

data Free◦ f x = Ret x
| Con (f (Free◦ f x))

with monad instance:

instance Functor f ⇒Monad (Free◦ f)where
return x = Ret x
(Ret x) >>= f = f x
(Con m)>>= f = Con (fmap (>>=f) m)

The insertion of generators and the universal morphism from the free monad are:

ins :: Functor f ⇒ f q−→ Free◦ f
ins x = Con (fmap Ret x)

free :: (Functor f ,Monad m)⇒ (f q−→ m)→ (Free◦ f q−→ m)

free f (Ret x) = return x
free f (Con t) = join (f (fmap (free f) t))

3.3 Cayley Representation of Monads

For an exponent F , we may apply Theorem 2.8 and obtain the monad of endomorphisms
FF , the monad morphism rep, and the natural transformation abs. The monad FF corre-
sponding to the monoid of endomorphisms on a functor F is called the codensity monad
on F (Mac Lane, 1971; Jaskelioff, 2009).

The codensity monad is implemented by the following datatype.

type Rep f = Exp f f

instance Monad (Rep f)where
return x = Exp (λh→ h x)
(Exp m)>>= f = Exp (λh→ m (λx→ let Exp t = f x in t h))

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 13

The definition follows from the general definition of monoid of endomorphisms. The
morphisms converting from a monad m to Rep m and back are the following.

rep :: Monad m⇒ m x→ Rep m x
rep m = Exp (λk→ m>>= k)

abs :: Monad m⇒ Rep m x→ m x
abs (Exp m) = m return

By Theorem 2.8, we know that abs ◦ rep = id, and that abs is a monad morphism.
Hence, we may change the representation of monadic computations on m, and perform
computations on Rep m. This change of representation is exactly the optimisation
introduced by Voigtländer (2008) and shown correct by Hutton et al. (2010).

Therefore, difference lists and the codensity transformation are both instances of the
same change of representation: the Cayley representation.

4 Ends and Coends

In this section we review the concept of a special type of limit called end and its dual, a spe-
cial type of colimit called coend. These concepts will be instrumental in the development
of the next sections.

4.1 Ends

A limit for a functor F : C → D is a universal cone to F , where a cone is a natural
transformation ∆D → F from the functor which is constantly D, for a D ∈ D , into the
functor F .

When working with functors with mixed variance F : C op×C →D , rather than consid-
ering its limit, one is usually interested in its end. An end for a functor F : C op×C → D

is a universal wedge to F , where a wedge is a dinatural transformation ∆D→ F from the
functor which is constantly D for a D ∈ D , into the functor F . We make this precise with
the following definitions.

Definition 4.1
A dinatural transformation α : F → G between two functors F,G : C op×C → D is a
family of morphisms of the form αC : F(C,C)→ G(C,C), one morphism for each C ∈ C ,
such that for every morphism f : C→C′ the following diagram commutes.

F(C,C)
αC // G(C,C)

G(id, f)

&&
F(C′,C)

F(f ,id)
88

F(id, f) &&

G(C,C′)

F(C′,C′)
αC′
// G(C′,C′)

G(f ,id)

88

ZU064-05-FPR main 20 September 2017 18:33

14 E. Rivas and M. Jaskelioff

An important difference between natural transformations and dinatural transformations
is that the latter cannot be composed in general.

Definition 4.2
A wedge from an object V ∈D to a functor F : C op×C →D is a dinatural transformation
from the constant functor ∆V : C op×C →D to F . Explicitly, an object V together with a
family of morphisms αX : V →F(X ,X) such that for each f : C→C′ the following diagram
commutes.

F(C,C)

F(id, f)

%%
V

αC
;;

αC′ ##

F(C,C′)

F(C′,C′)
F(f ,id)

99

In the same way a limit is a final cone, an end is a final wedge.

Definition 4.3
The end of a functor F : C op×C → D is a final wedge for F . Explicitly, it is an object
V ∈D together with a family of morphisms ωC : V → F(C,C) such that the diagram

F(C,C)

F(id, f)

%%
V

ωC
;;

ωC′ ##

F(C,C′)

F(C′,C′)
F(f ,id)

99

commutes for each f : C→ C′, and such that for every wedge from V ′ ∈ D , given by a
family of morphisms γC : V ′→ F(C,C), there exists a unique morphism 〈γ〉 : V ′→V such
that ωC ◦ 〈γ〉= γC.

The object V is usually denoted by
∫

X F(X ,X) and referred to as “the end of F”. The uni-
versal property of ends tell us each morphism into an end is in a one-to-one correspondence
with a dinatural family of morphisms:

〈γ〉 : Y →
∫

X F(X ,X)

γX : Y → F(X ,X), dinatural in X

Let F,G : C op×C → Set, with C a small category. If we denote the dinatural transfor-
mations between F and G by Dinat(F,G), then:

Dinat(F,G) ∼=
∫

X
F(X ,X)→ G(X ,X)

Natural transformations are a particular instance of dinatural transformations. More
concretely, when F and G are functors in one covariant variable (i.e. dummy in their

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 15

contravariant variable), Dinat(F,G) reduces to Nat(F,G) and we have

Nat(F,G) ∼=
∫

X
FX → GX

One nice feature of ends is that they lead to a natural implementation of categorical
concepts in Haskell by replacing the end by a universal quantifier (Bainbridge et al.,
1990). For example, the class of natural transformations between functors F and G is,∫

X
FX → GX

By implementing this end as a universal quantifier we obtain the type constructor of
natural transformations which was introduced in Section 3.

type f q−→ g = ∀x. f x→ g x

4.2 Coends

There are dual notions of wedges and ends, namely cowedges and coends. We briefly
summarise their definitions.

Definition 4.4
A cowedge from F is an object V together with a dinatural transformation α : F → ∆V .

Definition 4.5
A coend is an initial cowedge. Explicitly, a coend of F is an object V together with a family
of morphisms ιC : F(C,C)→V such that ιC ◦F(f , id) = ιC′ ◦F(id, f) for each f : C→C′,
which is universal with respect to this property: for every cowedge given by an object V ′

and a family of morphisms γC : F(C,C)→V ′, there exists a unique morphism [γ] : V →V ′

such that γC = [γ]◦ ιC.

The object V is usually denoted by
∫ X F(X ,X) and referred to as “the coend of F”. The

universal property of coends tell us that each morphism out of a coend is in a one-to-one
correspondence with a family of dinatural morphisms.

[γ] :
∫ X F(X ,X)→ Y

γX : F(X ,X)→ Y, dinatural in X

In the same way an end can be implemented as a universal quantifier, a coend can be
implemented as an existential quantifier.

4.3 Yoneda Lemma in End and Coend Form

We can express the Yoneda Lemma using ends and coends (Day & Kelly, 1969):

FX ∼=
∫

Y
C (X ,Y)→ FY ∼=

∫ Y
FY ×C (Y,X)

ZU064-05-FPR main 20 September 2017 18:33

16 E. Rivas and M. Jaskelioff

The end form and coend form of the Yoneda lemma lead to straightforward
implementations in Haskell. The components of the Yoneda isomorphism in end form
are implemented as a polymorphic function between types f x and ∀y. (x→ y)→ f y.

ϕ :: Functor f ⇒ f x→ (∀y. (x→ y)→ f y)
ϕ v = λ f → fmap f v

ϕ−1 :: (∀y. (x→ y)→ f y)→ f x
ϕ−1 g = g id

Similarly, its coend form (also known as “coYoneda Lemma”) is expressed by

ψ :: Functor f ⇒ f x→ (∃ y. (f y,y→ x))
ψ v = (v, id)

ψ−1 :: Functor f ⇒ (∃ y. (f y,y→ x))→ f x
ψ−1 (x,g) = fmap g x

5 Applicative Functors as Monoids

Similarly to monads, applicative functors (McBride & Paterson, 2008) are a class of func-
tors used to write effectful computations. Compared to monads, applicative functors are a
strictly weaker notion: every monad is an applicative functor (see Section 8.3), but there
are applicative functors that are not monads. The main difference between monads and
applicative functors is that the latter do not allow effects to depend on previous values, i.e.
the effects are fixed beforehand.

In Haskell, applicative functors are represented by the following type class:

class Functor f ⇒ Applicative f where
pure :: x→ f x
(~) :: f (x→ y)→ f x→ f y

Since their introduction, applicative functors have been characterised categorically as
strong lax monoidal functors (McBride & Paterson, 2008). In Section 3, we already ex-
plained the notion of strength for a functor. Now, we explain what is a lax monoidal functor.
In simple words, a lax monoidal functor is a functor preserving the monoidal structure of
the categories involved.

Definition 5.1
A lax monoidal functor F : C1→ C2 is a functor between the underlying categories of two
monoidal categories (C1,⊗, I1,α1,λ1,ρ1) and (C2,⊕, I2,α2,λ2,ρ2) together with a natural
transformation

φX ,Y : FX ⊕ FY → F(X ⊗ Y)

and a morphism

φ
◦ : I2→ FI1

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 17

such that the following diagrams commute.

FX ⊕ (FY ⊕ FZ)
id⊕φY,Z //

α2

��

FX ⊕ F(Y ⊗ Z)
φX ,(Y⊗Z) // F(X ⊗ (Y ⊗ Z))

F(α1)

��
(FX ⊕ FY)⊕ FZ

φX ,Y⊕id
// F(X ⊗ Y)⊕ FZ

φ(X⊗Y),Z

// F((X ⊗ Y)⊗ Z)

FX ⊕ I2
id⊕φ◦ //

ρ2

��

FX ⊕ FI1

φX ,I1

��
FX F(X ⊗ I1)

F(ρ1)
oo

I2 ⊕ FX
φ◦⊕id //

λ2

��

FI1 ⊕ FX

φI1 ,X

��
FX F(I1 ⊗ X)

F(λ1)
oo

A monoidal functor is a lax monoidal functor in which φ and φ ◦ are isomorphisms.

A strong lax monoidal functor is simply a lax monoidal functor which is also a strong
functor and in which the strength interacts coherently with the monoidal structure. In our
setting of Set endofunctors we get this coherence for free.

The categorical characterisation of applicative functors as strong lax monoidal functors
gives rise to an alternative (but equivalent) implementation of applicative functors:

class Functor f ⇒Monoidal f where
unit :: f ()
(?) :: (f x, f y)→ f (x,y)

We saw in Section 3 how monads are monoids in a particular monoidal category. Ap-
plicative functors can be shown to be monoids too. Interestingly, they are monoids in the
same category as monads: An applicative functor is a monoid in a category of endofunctors.
However, it is not the same monoidal category, as this time we must consider a different
notion of tensor. For monads we used composition; for applicative functors we use a tensor
called Day convolution (Day, 1970). Given a cartesian closed category C , two functors
F,G : C → C , and an object X in C , the Day convolution (F ? G)X is a new object in C

defined as:

(F ? G)X =
∫ Y,Z

FY ×GZ×XY×Z

The coend does not necessarily exist for arbitrary Set endofunctors, but it is guaranteed to
exist for small functors (Day & Lack, 2007). In the remainder of the section we will work
with [Set,Set]S, the category of small Set endofunctors.

The mapping of objects F ? G extends to a functor. Moreover, the Day convolution is a
bifunctor − ?− : [Set,Set]S× [Set,Set]S→ [Set,Set]S.

ZU064-05-FPR main 20 September 2017 18:33

18 E. Rivas and M. Jaskelioff

The coend in the definition of the Day convolution can be implemented by an existential
datatype. In the definition below, done in GADT style (Peyton Jones et al., 2006), the
type variables y and z are existentially quantified.

data (f ? g) x where
Day :: f y→ g z→ ((y,z)→ x)→ (f ? g) x

instance (Functor f ,Functor g)⇒ Functor (f ? g)where
fmap f (Day x y h) = Day x y (f ◦h)

The Day convolution is a bifunctor with the following mapping of morphisms:

bimap :: (f q−→ h)→ (g q−→ i)→ (f ? g q−→ h ? i)
bimap m1 m2 (Day x y f) = Day (m1 x) (m2 y) f

The following proposition is useful for writing morphisms from the convolution of two
functors onto another object.

Proposition 5.2
There is a one-to-one correspondence defining morphisms going out of a Day convolution∫

X
(F ? G)X → HX ∼=

∫
Y,Z

(FY ×GZ)→ H(Y ×Z) (5.1)

which is natural in F , G, and H, and the morphisms witnessing the isomorphism can be
written using the universal property of ends.

Remark 5.3 (Day convolution as a left Kan extension)
In view of Proposition 5.2, F ? G is the left Kan extension of ×̄ ◦ (F×G) along ×̄, where
×̄ : C ×C → C is the functor which takes an object (X ,Y) of the product category into a
product of objects X×Y .

Proposition 5.2 shows an equivalence between the type (f ? g) q−→ h and the type
∀y z. (f y,g z)→ h (y,z).

ϑ :: (f ? g q−→ h)→ (f y,g z)→ h (y,z)
ϑ f (x,y) = f (Day x y id)

ϑ−1 :: Functor h⇒ (∀y z. (f y,g z)→ h (y,z))→ (f ? g q−→ h)
ϑ−1 g (Day x y f) = fmap f (g (x,y))

In contrast to the composition tensor, the Day convolution is not strict. Moreover, since
we have an isomorphism γ : (F ? G)X → (G ? F)X natural in F , G, and X , the Day
convolution is a symmetric tensor. This means that, together with appropriate natural trans-
formations α , λ , and ρ , Endo? = ([Set,Set]S,?, Id,α,λ ,ρ,γ) is a symmetric monoidal
category (Day, 1970).

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 19

Here we present the natural isomorphisms of the monoidal category Endo?. One
direction is given by the following natural transformations:

λ :: Functor f ⇒ Id ? f q−→ f
λ (Day (Id x) y f) = fmap (f ◦ (λy→ (x,y))) y

ρ :: Functor f ⇒ f ? Id
q−→ f

ρ (Day x (Id y) f) = fmap (f ◦ (λ z→ (z,y))) x

α :: f ? (g ? h) q−→ (f ? g) ? h
α (Day x (Day y z f) g) = Day (Day x y f1) z f2
where f1 = λ (c,e)→ (c,λh→ f (e,h))

f2 = λ ((c,h),d)→ g (c,h d)

γ :: (f ? g) q−→ (g ? f)
γ (Day x y f) = Day y x (f ◦ swap)

where swap (x,y) = (y,x)

Their respective inverses are defined as:

λ−1 :: Functor f ⇒ f q−→ Id ? f
λ−1 x = Day (Id ()) x snd

ρ−1 :: Functor f ⇒ f q−→ f ? Id

ρ−1 x = Day x (Id ()) fst

α−1 :: (f ? g) ? h q−→ f ? (g ? h)
α−1 (Day (Day x y f) z g) = Day x (Day y z f1) f2

where f1 = λ (d,b)→ ((λc→ f (c,d)),b)
f2 = λ (c,(h,b))→ g (h c,b)

Remark 5.4 (Alternative presentations of the Day convolution)

In our setting of Set endofunctors, the Day convolution has different alternative represen-
tations (Day, 1970):

(F ? G)X ∼=
∫ Y

FY ×G(Y → X) ∼=
∫ Y

F(Y → X)×GY (5.2)

The equivalences essentially follow from Yoneda and cartesian closure.

The corresponding implementations of the two alternative representations are:

data (f ?1 g) x where
Day1 :: f y→ g (y→ x)→ (f ?1 g) x

data (f ?2 g) x where
Day2 :: f (y→ x)→ g y→ (f ?2 g) x

In these two definitions, the type variable y is existentially quantified.

ZU064-05-FPR main 20 September 2017 18:33

20 E. Rivas and M. Jaskelioff

5.1 Monoids in Endo?

A monoid in Endo? amounts to:

• an endofunctor F ,
• a natural transformation m : F ? F → F ,
• and a unit e : Id→ F ; such that the following diagrams commute.

(F ? F) ? F m?F // F ? F

m

��
F ? (F ? F)

α

OO

F?m
// F ? F m

// F

F ? F
m

%%

F ? Id
F?eoo

ρ

��
Id ? F

e?F

OO

λ

// F

From the unit e, one can consider the component e1 : 1→ F1. This component defines a
mapping that can be used as the unit morphism for a lax monoidal functor. Similarly, using
Equation 5.1, the morphism m : F ? F → F is equivalent to a family of morphisms

ϑ(m)X ,Y : FX×FY → F(X×Y)

which is natural in X and Y . This family of morphisms corresponds to the multiplicative
transformation in a lax monoidal functor. Putting together F , ϑ(m) and e1, we obtain a
strong lax monoidal functor on Set. That is, we obtain an applicative functor.

It remains to be seen if the converse is true: can a monoid in Endo? be defined from an
applicative functor? Given an applicative functor (F,φ ,φ ◦), it easy to see that a multiplica-
tion for the monoid can be given from φ , using Equation 5.1 again. What remains to be seen
is if we can recover the whole natural transformation e : Id→ F out of only one component
φ ◦ : 1→ F1. We do so by using the strength of F (which exists since it is an endofunctor
on Set): the natural transformation e is recovered by the following composition

X
〈!,id〉 // 1×X

φ◦×id // F1×X
st1,X // F(1×X)

Fπ2 // FX

which defines a morphism eX : X → FX for each X .
All things considered, applicative functors are monoids in the category of endofunctors

which is monoidal with respect to the Day convolution.

5.2 Exponentials in Endo?

To apply the Cayley representation, first it must be determined that the category Endo? is
monoidal closed. To do so, we use the same technique we used in section 3.1 for finding
exponentials in Endo◦: we apply the Yoneda lemma and then the universal property of
exponentials.

GF X ∼= Nat(X →−,GF)

∼= Nat((X →−) ? F ,G)

Therefore, whenever the last expression makes sense, it can be used as the definition of the
exponential object. Since we are working in a category of small functors, the expression al-
ways makes sense and the exponential is always guaranteed to exist. Using Proposition 5.2

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 21

and Yoneda, an alternative form for GF can be derived (Day, 1973):

GF X ∼= Nat(F,G(X×−)) ∼=
∫

Y
FY → G(X×Y)

Using Haskell, this exponential can be represented as:

data Exp f g x = Exp (∀y. f y→ g (x,y))

The components of the isomorphism showing it is an exponential are:

b·c :: (f ? g q−→ h)→ f q−→ Exp g h
bmc x = Exp (λy→ m (Day x y id))

d·e :: Functor h⇒ (f q−→ Exp g h)→ f ? g q−→ h
df e (Day x y h) = fmap h (t y)

where Exp t = f x

We therefore conclude that the symmetric monoidal category Endo? is closed.

5.3 Free Applicative Functor

By Proposition 2.5, the free monoid, viz. the free applicative functor, exists.

The direct application of Proposition 2.5 yields the following implementation of the
free applicative functor.

data Free? f x = Pure x | Rec ((f ? Free? f) x)

Inlining the definition of ?, we obtain the simplified datatype

data Free? f a where

Pure :: x→ Free? f x
Rec :: f y→ Free? f z→ ((y,z)→ x)→ Free? f x

with the following instances:

instance Functor f ⇒ Functor (Free? f)where
fmap g (Pure x) = Pure (g x)
fmap g (Rec x y f) = Rec x y (g◦ f)

instance Functor f ⇒ Applicative (Free? f)where
pure = Pure

Pure g ~ z = fmap g z
(Rec x y f)~ z = Rec x (pure (,)~ y~ z) (λ (a,(b,c))→ f (a,b) c)

The implementation of the insertion of generators and the universal morphism from the
free applicative is:

ins :: Functor a⇒ f q−→ Free? f
ins x = Rec x (Pure ()) fst

ZU064-05-FPR main 20 September 2017 18:33

22 E. Rivas and M. Jaskelioff

free :: (Functor f ,Applicative g)⇒ (f q−→ g)→ (Free? f q−→ g)
free f (Pure x) = pure x
free f (Rec x y g) = pure (curry g)~ f x~ free f y

The alternative presentations of the Day convolution of Equation 5.2 result in the
alternative types ?1 and ?2. Using these types instead of ? in the definition of the free
applicative functor, results in two alternative definitions:

data Free′? f x where
Pure′ :: x→ Free′? f x
Rec′ :: f y→ Free′? f (y→ x)→ Free′? f x

data Free′′? f x where
Pure′′ :: x→ Free′′? f x
Rec′′ :: f (y→ x)→ Free′′? f y→ Free′′? f x

Hence, the two alternative presentations of the Day convolution given in Equation 5.2
give rise to the two notions of free applicative functor found by Capriotti and
Kaposi (2014).

5.4 Cayley Representation for Applicative Functors

Having found the exponentials in Endo?, we may apply Theorem 2.8 and construct the
corresponding Cayley representation.

The Cayley representation of an applicative functor is the exponential of the functor
over itself.

type Rep f = Exp f f

instance Functor f ⇒ Functor (Rep f)where
fmap f (Exp h) = Exp (fmap (λ (x,y)→ (f x,y))◦h)

instance Functor f ⇒ Applicative (Rep f)where
pure c = Exp (fmap (c,))
Exp f ~Exp a = Exp (fmap g◦a◦ f)
where g (x,(f ,c)) = (f x,c)

The Applicative instance is obtained from the general construction of the monoid of
endomorphisms. Finally, from Theorem 2.8, we obtain the applicative morphism rep

and the natural transformation abs, together with the property that abs◦ rep = id.

rep :: Applicative f ⇒ f q−→ Rep f
rep x = Exp (λy→ pure (,)~ x~ y)

abs :: Applicative f ⇒ Rep f q−→ f
abs (Exp t) = fmap fst (t (pure ()))

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 23

6 Weak Arrows as Monoids

Having successfully fit both monads and applicative functors as monoids in a monoidal
category, we now focus on a third popular notion of computation: arrows.

Arrows (Hughes, 2000) are a generalisation of monads that can offer standardised inter-
faces to libraries that are incompatible with the monadic interface, including parsers with
static analysis, quantum computing (Vizzotto et al., 2006), secure information flow (Li &
Zdancewic, 2010) and functional reactive programming (Hudak et al., 2003).

Asada (2010) characterised arrows as strong monads in a bicategory. Closer to our in-
tentions of working with monoids in a monoidal category, Jacobs et al. (2009) showed that
weak arrows (arrows without the operation first) are monoids in the category of profunc-
tors. They recover (strong) arrows by adding the strength on top of the monoid structure.

We briefly review the results by Jacobs et al. on weak arrows and then proceed to obtain
free weak arrows, and a Cayley representation for weak arrows.

A profunctor from C to D is a functor Dop×C → Set, sometimes written as C −→+ D .
In a sense, profunctors are to relations what functors are to functions. A morphism between
two profunctors is a natural transformation between the profunctors considered as functors.

We indicate that a type constructor p :: ∗ → ∗ → ∗ is a profunctor by providing an
instance of the following type class.

class Profunctor p where

dimap :: (x′→ x)→ (y→ y′)→ p x y→ p x′ y′

such that the following laws hold

dimap id id = id

dimap (f ◦g) (h◦ i) = dimap g h◦dimap f i

Notice how, as opposed to a bifunctor, the type constructor is contravariant in its first
argument.

Definition 6.1
The category of profunctors from C to D , denoted Prof(C ,D), has as objects profunctors
from C to D , and as morphisms natural transformations between functors Dop×C → Set.

From now on, we will focus on profunctors C −→+ C , where C is a small cartesian
closed subcategory of Set with inclusion J : C → Set. To avoid notational clutter, we omit
the functor J when considering elements of C as elements of Set.

Profunctors can be composed in such a way that gives a notion of tensor.

Definition 6.2 (Profunctor tensor (Bénabou, 1973))
Given two profunctors P,Q : C −→+ C , their composition is

(P⊗ Q)(X ,Y) =
∫ Z

P(X ,Z)×Q(Z,Y)

ZU064-05-FPR main 20 September 2017 18:33

24 E. Rivas and M. Jaskelioff

The profunctor tensor is implemented in Haskell as follows:

data (p⊗q) x y where
PCom :: p x z→ q z y→ (p⊗q) x y

instance (Profunctor p,Profunctor q)⇒ Profunctor (p⊗q)where
dimap m1 m2 (PCom p q) = PCom (dimap m1 id p) (dimap id m2 q)

This tensor is analogous to the composition of relations, replacing the existential quan-
tification by a coend. The functor Hom : C op×C → Set mapping two objects to the set of
morphisms between them is a small functor and it is the unit for profunctor composition:

(P⊗ Hom)(X ,Y) =
∫ Z

P(X ,Z)× (Z→ Y) ∼= P(X ,Y)

The equality holds by definition of profunctor composition, and the isomorphism holds
by the Yoneda Lemma. Thus, we may define a natural isomorphism ρ : P ⊗ Hom ∼= P.
Analogously, we can define the other two natural isomorphisms λ : Hom ⊗ P ∼= P and
α : P ⊗ (Q ⊗ R) ∼= (P ⊗ Q) ⊗ R and obtain a monoidal structure for [C op×C ,Set], with
profunctor composition ⊗ as its tensor, and the Hom functor as its unit. We denote this
monoidal category by Pro.

We have shown how to implement the objects of Pro as instances of the type class
ProFunctor. Morphisms between profunctors are implemented as

type p qq−→ q = ∀x y. p x y→ q x y

The unit Hom is simply the type of functions.

type Hom = (→)

The natural isomorphisms λ , ρ , and α are implemented as

λ :: Profunctor p⇒ Hom⊗p qq−→ p
λ (PCom f x) = dimap f id x

ρ :: Profunctor p⇒ p⊗Hom
qq−→ p

ρ (PCom x f) = dimap id f x

α :: p⊗ (q⊗ r) qq−→ (p⊗q)⊗ r
α (PCom p (PCom q r)) = PCom (PCom p q) r

with inverses

λ−1 :: Profunctor p⇒ p qq−→ Hom⊗p
λ−1 f = PCom id f

ρ−1 :: Profunctor p⇒ p qq−→ p⊗Hom

ρ−1 f = PCom f id

α−1 :: (p⊗q)⊗ r qq−→ p⊗ (q⊗ r)
α−1 (PCom (PCom p q) r) = PCom p (PCom q r)

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 25

What are the monoids in this monoidal category? A monoid in Pro amounts to:

• a profunctor A,
• a natural transformation m : A⊗ A→ A,
• and a unit e : Hom→ A; such that the diagrams

(A⊗ A)⊗ A
m⊗A // A⊗ A

m

��
A⊗ (A⊗ A)

α

OO

A⊗m
// A⊗ A m

// A

A⊗ A
m

''

A⊗ Hom
A⊗eoo

ρ

��
Hom⊗ A

e⊗A

OO

λ

// A

commute.

Using the isomorphism(∫ Z
A(X ,Z)×A(Z,Y)

)
→ A(X ,Y) ∼=

∫
Z

A(X ,Z)×A(Z,Y)→ A(X ,Y)

we get that a natural transformation m : A⊗ A→ A is equivalent to a family of morphisms
mX ,Y,Z : A(X ,Z)×A(Z,Y)→ A(X ,Y) which is natural in X and Y and dinatural in Z.

This presentation leads naturally to the following implementation of monoids in the
monoidal category Pro.

class Profunctor a⇒WeakArrow a where

arr :: (x→ y)→ a x y
(≫) :: a x y→ a y z→ a x z

The laws that must hold are:

(a ≫ b)≫ c = a ≫ (b ≫ c)

arr f ≫ a = dimap f id a

a ≫ arr f = dimap id f a

arr (g◦ f) = arr f ≫ arr g

6.1 Exponentials in Pro

The exponential in Pro exists (Bénabou, 1973) and a short calculation using the Yoneda
Lemma shows it to be

QP(X ,Y) =
∫

Z
P(Y,Z)→ Q(X ,Z).

The implementation of exponentials in Pro follows the definition above:

data Exp p q x y = Exp (∀z. p y z→ q x z)

instance (Profunctor p,Profunctor q)⇒ Profunctor (Exp p q)where
dimap m1 m2 (Exp pq) = Exp (dimap m1 id◦pq◦dimap m2 id)

ZU064-05-FPR main 20 September 2017 18:33

26 E. Rivas and M. Jaskelioff

The components of the isomorphism which shows that Exp is an exponential are:

b·c :: (p⊗q qq−→ r)→ (p qq−→ Exp q r)
bmc f = Exp (λg→ m (PCom f g))

d·e :: (p qq−→ Exp q r)→ (p⊗q qq−→ r)
dme (PCom f g) = e g where Exp e = m f

6.2 Free Weak Arrows

By Proposition 2.5, the free monoid, viz. the free weak arrow, exists.

The direct application of Proposition 2.5 yields the following implementation of the
free weak arrow.

data Free⊗ a x y where
Hom :: (x→ y)→ Free⊗ a x y
Comp :: a x z→ Free⊗ a z y→ Free⊗ a x y

with the following instances:

instance Profunctor a⇒ Profunctor (Free⊗ a)where
dimap f g (Hom h) = Hom (g◦h◦ f)
dimap f g (Comp x y) = Comp (dimap f id x) (dimap id g y)

instance Profunctor a⇒WeakArrow (Free⊗ a)where
arr f = Hom f
(Hom f) ≫ c = dimap f id c
(Comp x y)≫ c = Comp x (y ≫ c)

The insertion of generators ins and the universal morphism free from the free weak
arrow are:

ins :: Profunctor a⇒ a qq−→ Free⊗ a
ins x = Comp x (arr id)

free :: (Profunctor a,WeakArrow b)⇒ (a qq−→ b)→ (Free⊗ a qq−→ b)
free f (Hom g) = arr g
free f (Comp x y) = f x ≫ free f y

6.3 Cayley Representation of Weak Arrows

Having found the exponentials in Pro, we may apply Theorem 2.8 and construct the
corresponding Cayley representation.

The Cayley representation is the exponential of a profunctor over itself.

type Rep a = Exp a a

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 27

instance Profunctor a⇒WeakArrow (Rep a)where
arr f = Exp (λy→ dimap f id y)
(Exp f)≫ (Exp g) = Exp (λy→ f (g y))

The instance is derived from the general construction of the monoid of endomorphisms.
Finally, from Theorem 2.8, we obtain the weak arrow morphism rep and the natural
transformation abs, together with the property that abs◦ rep = id.

rep :: WeakArrow a⇒ a qq−→ Rep a
rep x = Exp (λy→ x ≫ y)

abs :: WeakArrow a⇒ Rep a qq−→ a
abs (Exp f) = f (arr id)

7 Arrows as Monoids

Arrows are weak arrows with an additional operation called first. In order to see arrows as
monoids, we need to internalise the first operation in the categorical presentation. Jacobs
et al. (2009) solve this problem by adjoining a first operator to monoids in Pro: an arrow is
a monoid (A,m,e) together with a family of morphisms first : A(X ,Y)→ A(X×Z,Y ×Z).
We take an alternative path. We work on a category of strong profunctors (profunctors
with a first-like operator), and then consider monoids in this new monoidal category.
This approach mirrors the manner in which (strong) monads and applicative functors were
obtained, and therefore we gain uniformity.

Definition 7.1
A strength for a profunctor P : C op×C → Set is a family of morphisms

stX ,Y,Z : P(X ,Y)→ P(X×Z,Y ×Z)

that is natural in X , Y and dinatural in Z, such that the following diagrams commute.

P(X ,Y)

st1

��

P(π1,id)

**
P(X×1,Y ×1)

P(id,π1)
// P(X×1,Y)

P(X ,Y)

stV×W

��

stV // P(X×V,Y ×V)

stW

��
P(X× (V ×W),Y × (V ×W))

P(α−1,α)

// P((X×V)×W,(Y ×V)×W)

We say that a pair (P,st) is a strong profunctor. The diagrams that must commute here
are analogous to those for a tensorial strength of an endofunctor (Definition 3.1).

ZU064-05-FPR main 20 September 2017 18:33

28 E. Rivas and M. Jaskelioff

The type class of strong profunctors is a simple extension of Profunctor.

class Profunctor p⇒ StrongProfunctor p where

first :: p x y→ p (x,z) (y,z)

Instances of the StrongProfunctor class are subject to the following laws.

dimap id π1 (first a) = dimap π1 id a

first (first a) = dimap α
−1

α (first a)

dimap (id × f) id (first a) = dimap id (id × f) (first a)

The first two laws correspond to the two diagrams above, while the third one
corresponds to dinaturality of first in the z variable.

In contrast to strong functors on Set, the strength of a profunctor may not exist, and
when it does, it may not be unique.

As an example of strengths not being unique, consider the following profunctor:

data Double x y = Double ((x,x)→ (y,y))

instance Profunctor Double where

dimap f g (Double h) = Double ((g × g)◦h◦ (f × f))

There exist two possible instances satisfying the strength axioms.

instance StrongProfunctor Double where

first (Double f) = Double g
where g ((x,z),(x′,z′)) = ((y,z),(y′,z′))

where (y,y′) = f (x,x′)

instance StrongProfunctor Double where

first (Double f) = Double g
where g ((x,z),(x′,z′)) = ((y,z),(y′,z))

where (y,y′) = f (x,x′)

Therefore, the profunctor Double does not have a unique strength.

Given two strong profunctors (P,stP), (Q,stQ), a strong natural transformation is a
natural transformation α : P→ Q that is compatible with the strengths:

P(X ,Y) stP //

α

��

P(X×Z,Y ×Z)

α

��
Q(X ,Y)

stQ
// Q(X×Z,Y ×Z)

Following the approach to strong monads of Moggi (1995), we work with the category
[C op×C ,Set]str of strong profunctors.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 29

Definition 7.2
The category [C op×C ,Set]str consists of pairs (P,st) as objects, where P is a profunctor
and st is a strength for it, and of strong natural transformations as morphisms.

Even though the strength for a profunctor is not unique, we usually write (P,stP). Here
the superscript P in stP is just syntax to distinguish between various strengths for different
profunctors, but it does not mean that stP is the strength for P.

We now seek to equip the category of strong profunctors with a monoidal structure.
The monoidal structure of Pro can be used for strong profunctors. The unit Hom has
an obvious strength. The strength for the composition of two profunctors, however, is a
bit more involved. Given two strong profunctors (P,stP) and (Q,stQ), one can use the
universal property of coends and define the strength of their composition as stP⊗Q

Z = [h],
where h is a dinatural transformation on V defined as the following composition:

P(X ,V)×Q(V,Y)
stPZ×st

Q
Z

−−−−−→ P(X×Z,V ×Z)×Q(V ×Z,Y ×Z)
ιV×Z
−−−−−→ (P⊗ Q)(X×Z,Y ×Z)

It is not difficult to verify that such a family is indeed a strength for the profunctor P⊗ Q.
The monoidal category of strong profunctors with tensor defined in this way is denoted by
SPro.

A monoid in SPro amounts to the same data that we had in the case of Pro. This time,
however, the morphisms m and e (being morphisms of SPro) must be compatible with the
strength as well.

Arrows can be implemented as strong profunctors which are weak arrows.

class (StrongProfunctor a,WeakArrow a)⇒ Arrow a

Instance declarations of Arrow are empty, but the programmer should check the
compatibility of the unit and multiplication of the weak arrow with the strength:

first (arr f) = arr (f × id)

first (a ≫ b) = first a ≫ first b

These two laws, together with the laws for profunctors, weak arrows, and strength,
constitute the arrows laws proposed by Hughes (2000).

7.1 Exponentials in SPro

We have not managed to find exponentials in SPro. Part of the difficulty in finding one
seems to stem from the fact that strengths for profunctors may not exist, and when they do,
they may not be unique. In particular, given two strong profunctors P and Q, the obvious
candidate for an exponential in SPro is the exponential in Pro, namely the profunctor QP

defined in Section 6.1. However, this profunctor does not seem to have a strength.
Fortunately, as shown in Section 8.5, two canonical strong profunctors can be derived

from any profunctor. Using one of these, we may lift representations for weak arrows and
obtain representations for arrows (as shown in Section 8.6).

ZU064-05-FPR main 20 September 2017 18:33

30 E. Rivas and M. Jaskelioff

7.2 Free Arrows

Having failed to find exponentials in SPro, we cannot apply Proposition 2.5 to obtain the
free monoid in SPro and therefore we fall back to finding it directly. Fortunately, this is
not difficult, as the free monoid on Pro is equipped with an obvious strength whenever it
is built over a strong profunctor, and indeed one can verify that the obtained monoid is the
free monoid in SPro.

The free weak arrow can be equipped with a strength when defined over a strong
profunctor.

instance StrongProfunctor a⇒ StrongProfunctor (Free⊗ a)where
first (Hom f) = Hom (λ (x,z)→ (f x,z))
first (Comp x y) = Comp (first x) (first y)

Since the unit and multiplication of the free arrow are compatible with the strength, it
is a correct Arrow instance.

instance StrongProfunctor a⇒ Arrow (Free⊗ a)

The insertion of generators and the universal morphism are the same as the ones from
weak arrows. The only difference is that now we require StrongProfunctors instead of
plain Profunctors.

ins :: StrongProfunctor a⇒ a qq−→ Free⊗ a
ins x = Comp x (arr id)

free :: (StrongProfunctor a,Arrow b)⇒ (a qq−→ b)→ (Free⊗ a qq−→ b)
free f (Hom g) = arr g
free f (Comp x y) = f x ≫ free f y

Here, we would really like the type (a qq−→ b) to represent strength preserving morphisms
between strong profunctors. Therefore, free f is guaranteed to preserve the strength only
when f does.

8 On Functors Between Monoidal Categories

Monads, applicative functors, and arrows have been introduced as monoids in monoidal
categories. Now we ask what is the relation between these monoidal categories. It is well-
known that starting from a monad we can derive both an applicative functor and an arrow.
In this section we explain these and other derivations from the point of view of monoidal
categories. For example, in order to obtain a weak arrow from a monad, we are interested
in creating a monoid in Pro, given a monoid in Endo◦. Instead of trying to make up a
monoid in Pro directly, we will define a monoidal functor between the underlying monoidal
categories (in this case Endo◦ and Pro), and then use the following theorem to obtain a
functor between the corresponding monoids.

Theorem 8.1
Let (F,φ ,φ ◦) : C → D be a lax monoidal functor (see definition 5.1). If (M,m,e) is a
monoid in C , then (FM,Fm◦φ ,Fe◦φ ◦) is a monoid in D .

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 31

The above construction extends to a functor, and therefore we can induce functors between
monoids by way of lax monoidal functors between their underlying monoidal categories.

8.1 The Cayley Monoidal Functor

Applicative functors can be used to create arrows, here we present a monoidal functor that
gives rise to such construction. We consider the Cayley functor (Pastro & Street, 2008)

CAYLEY : Endo?→ Pro

CAYLEY(F)(X ,Y) = F(X → Y)

Despite its name, this functor bears no direct relation to the Cayley representation.
The Cayley functor is monoidal, as shown by Pastro and Street (2008), and therefore by

Theorem 8.1 it extends to a functor between the corresponding categories of monoids. That
is, it takes applicative functors to weak arrows. Moreover, the functor is also a monoidal
functor from Endo? to SPro, as each CAYLEY(F) has a strength. By Theorem 8.1, the
functor also extends to a functor from applicative functors to arrows.

The implementation of the Cayley functor is as follows (McBride & Paterson, 2008).

data Cayley f x y = Cayley (f (x→ y))

For every applicative functor, the Cayley functor constructs an arrow.

instance Applicative f ⇒WeakArrow (Cayley f)where
arr f = Cayley (pure f)
(Cayley x)≫ (Cayley y) = Cayley (pure (◦)~ y~ x)

instance Applicative f ⇒ StrongProfunctor (Cayley f)where
first (Cayley x) = Cayley (pure (λ f → λ (y,z)→ (f y,z))~ x)

instance Applicative f ⇒ Arrow (Cayley f)

8.2 The Kleisli Monoidal Functor

The well-known Kleisli category of a monad allows us to construct an arrow from any
monad. This can be seen as a consequence of applying Theorem 8.1 to the following lax
monoidal functor which we call KLEISLI.

KLEISLI : Endo◦→ SPro

KLEISLI(F)(X ,Y) = X → FY

The implementation of the Kleisli functor is as follows.

data Kleisli f x y = Kleisli (x→ f y)

instance Monad f ⇒WeakArrow (Kleisli f)where
arr f = Kleisli (λx→ return (f x))
(Kleisli f)≫ (Kleisli g) = Kleisli (λx→ f x>>=g)

ZU064-05-FPR main 20 September 2017 18:33

32 E. Rivas and M. Jaskelioff

instance Monad f ⇒ StrongProfunctor (Kleisli f)where
first (Kleisli f) = Kleisli (λ (x,z)→ f x>>=λy→ return (y,z))

instance Monad f ⇒ Arrow (Kleisli f)

8.3 The Day Monoidal Functor

We equip the identity endofunctor Id : [Set,Set]→ [Set,Set] with monoidal compatibility
morphisms φ and φ ◦. In this way (Id,φ ,φ ◦) is a lax monoidal functor from Endo◦ to Endo?
which we call DAY. The φ ◦ morphism is the identity on the identity functor. The morphism
φF,G : F ? G→ F ◦G is given by:

(F ? G)X =
∫ Y,Z

FY ×GZ× (Y ×Z→ X)

∫
st

−−−−−→
∫ Y,Z

F(Y ×GZ× (Y ×Z→ X))

∼=
−−−−−→

∫ Y,Z
F(GZ×Y × (Y ×Z→ X))∫

Fst

−−−−−→
∫ Y,Z

F(G(Z×Y × (Y ×Z→ X)))

∼=
−−−−−→

∫ Y,Z
F(G(Y ×Z× (Y ×Z→ X)))∫

F(Gev)

−−−−−→
∫ Y,Z

F(GX)
∼=

−−−−−→ F(GX)

Hence, we obtain the lax monoidal functor DAY : Endo◦→ Endo?.

By applying Theorem 8.1 to DAY, we obtain the well-known result that every monad
is an applicative functor.

instance Monad f ⇒ Applicative f where
pure = return

f ~ x = f >>=(λg→ x>>= return◦g)

8.4 The Reversed Monoid

For every monoidal category C⊗ = (C ,⊗, I,α,λ ,ρ), there is a reverse monoidal category
C⊗rev , with monoidal operator X⊗revY = Y ⊗ X . Every monoid in a monoidal category
determines a monoid in the reverse monoidal category:

Theorem 8.2
If (M,m,e) is a monoid in C⊗, then (M,m,e) is a monoid in C⊗rev .

In the case where the monoidal structure is symmetric, there is an isomorphism between
X⊗revY and X ⊗Y . We can use this isomorphism to equip the identity endofunctor over C

with a monoidal structure, yielding a monoidal functor from C⊗ to C⊗rev .

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 33

Theorem 8.3
Let C⊗ = (C ,⊗, I,α,λ ,ρ,γ) be a symmetric monoidal category, then we have a monoidal
functor (Id,γ, id) : C⊗→ C⊗rev .

If we apply Theorem 8.1 to a monoid M in C⊗, we obtain a monoid in C⊗rev . From
Theorem 8.2, this monoid can be converted to a monoid in C⊗. This last monoid is what
we call the reversed monoid of M.

As already mentioned, Endo? is a symmetric monoidal category, and therefore the re-
verse monoid construction can be applied to a monoid in Endo?. The resulting monoid is
known as the reversed applicative (Bird et al., 2013).

The reversed applicative is implemented as:

data Rev f x = Rev (f x) deriving Functor

instance Applicative f ⇒ Applicative (Rev f)where
pure = Rev ◦pure

Rev f ~Rev x = Rev (pure (flip ($))~ x~ f)

In intuitive terms, the difference between f and Rev f as applicative functors is that
Rev f sequences the order of effects in the reverse order (Bird et al., 2013).

8.5 The Tambara and Pastro Monoidal Functors

Not every profunctor is strong. Therefore, we are interested in investigating how to add
a strength to profunctors in Pro. In the following we show that there are two canonical
functors from Pro to SPro.

There is an obvious monoidal functor that goes from the monoidal category of strong
profunctors SPro to the monoidal category of profunctors Pro that forgets the additional
structure. More precisely, the functor U : SPro→ Pro forgets the strength.

U(P,stP) = P

Interestingly, this functor has right and left adjoints, yielding two canonical constructions
to obtain a strong profunctor from any profunctor. We start by giving its right adjoint, that
is, a functor TAMBARA such that we have a natural isomorphism:

φ : Pro(U(P,stP),Q) ∼= SPro((P,stP),TAMBARA Q) (8.1)

The monoidal functor TAMBARA : Pro→ SPro is given by TAMBARA Q = (TQ,st),
where the first component is

TQ(X ,Y) =
∫

Z
Q(X×Z,Y ×Z)

and the strength stZ is 〈h〉, with h a dinatural transformation on V defined by the composi-
tion:

TQ(X ,Y) =
∫

Z
Q(X×Z,Y ×Z)

ωZ×V
−−−−−→ Q(X× (Z×V),Y × (Z×V))

Q(α−1,α)

−−−−−→ Q((X×Z)×V,(Y ×Z)×V)

ZU064-05-FPR main 20 September 2017 18:33

34 E. Rivas and M. Jaskelioff

In the definition above, α is one of the isomorphisms of the monoidal category Pro and ω

is the family of morphisms arising from the universal property of ends.
The adjunction U a TAMBARA tells us that the TAMBARA functor completes a profunc-

tor by cofreely adding a strength. The name of the functor is due to a similar construction
defined by Pastro and Street (2008), when working on Tambara modules. This functor is
monoidal (Pastro & Street, 2008) and therefore by Theorem 8.1, it maps weak arrows to
arrows.

The Tambara functor may be implemented as follows.

data Tambara p x y = Tambara (∀z. p (x,z) (y,z))

instance Profunctor p⇒ Profunctor (Tambara p)where
dimap f g (Tambara x) = Tambara (dimap (lift f) (lift g) x)

where lift f (a,b) = (f a,b)

instance Profunctor p⇒ StrongProfunctor (Tambara p)where
first (Tambara x) = Tambara (dimap α−1 α x)
where α (x,(y,z)) = ((x,y),z)

α−1 ((x,y),z) = (x,(y,z))

The components of the isomorphism 8.1 are implemented in Haskell as follows.

φ :: (StrongProfunctor p,Profunctor q)⇒ (p qq−→ q)→ (p qq−→ Tambara q)
φ f p = Tambara (f (first p))

φ−1 :: (StrongProfunctor p,Profunctor q)⇒ (p qq−→ Tambara q)→ (p qq−→ q)
φ−1 f p = dimap fst−1 fst b
where Tambara b = f p

fst−1 x = (x,())

The forgetful functor U also has a left adjoint PASTRO : Pro→ SPro (Pastro & Street,
2008). That is, there is a functor PASTRO such that

ψ : SPro(PASTRO P,(Q,stQ)) ∼= Pro(P,U(Q,stQ)) (8.2)

holds. The functor is defined as PASTRO P = (FP,st), with components

FP(X ,Y) = P(X ,X → Y)

st = P(π1,b〈ev ◦ (id×π1),π2 ◦π2〉c)

In this case, the functor PASTRO is not lax monoidal, but instead oplax monoidal. This
means there are natural transformations:

τ : PASTRO(P⊗ Q)→ PASTRO P⊗ PASTRO Q

θ : PASTRO Hom→ Hom

Note that Theorem 8.1 can not be used to map weak arrows to arrows since it requires
lax monoidal functors and PASTRO is oplax.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 35

The PASTRO functor is implemented as follows.

data Pastro p x y = Pastro (p x (x→ y))

instance Profunctor p⇒ Profunctor (Pastro p)where
dimap f g (Pastro v) = Pastro (dimap f (λh x→ g (h (f x))) v)

instance Profunctor p⇒ StrongProfunctor (Pastro p)where
first (Pastro v) = Pastro (dimap fst (λ f (x,z)→ (f x,z)) v)

In Haskell, the components of the isomorphism are:

ψ :: (Profunctor p,StrongProfunctor q)⇒ (Pastro p qq−→ q)→ (p qq−→ q)
ψ f p = f (Pastro (dimap id (λx y→ x) p))

ψ−1 :: (Profunctor p,StrongProfunctor q)⇒ (p qq−→ q)→ (Pastro p qq−→ q)
ψ−1 f (Pastro p) = dimap (λx→ (x,x)) (λ (f ,v)→ f v) (first (f p))

The two functors PASTRO and TAMBARA provide two ways of constructing strong
profunctors from profunctors.

Using the adjunctions PASTRO a U a TAMBARA, we obtain a monad (U ◦ PASTRO)

and a comonad (U ◦TAMBARA), both on Pro. The corresponding categories of Eilenberg-
Moore algebras for a monad and coalgebras for a comonad are both equivalent to SPro.

8.6 An Application of the Tambara Functor: A Representation of Arrows

Although we have not found the form of exponential objects in SPro, we can lift the
exponential in SPro in such a way that we obtain an alternative representation for arrows.

The idea is to take a monoid in SPro and forget the strength structure using the forgetful
functor U . Then, use the Cayley representation for monoids in Pro, and finally apply the
Tambara functor to obtain a new strength on this monoid. That is, given a monoid (M,m,e)
in SPro, its representation is TAMBARA(UMUM). The functor TAMBARA is monoidal and
therefore, as shown by Theorem 8.1, it takes monoids in Pro to monoids in SPro.

More concretely, given a monoid ((A,stA),m,e) in SPro (i.e. an arrow), we construct a
representation morphism as

rep = A
〈stA〉 // TAMBARA A

TAMBARA(repw) // TAMBARA (AA)

where repw takes a weak arrow into its (weak arrow) Cayley representation. This is a well-
defined morphism in SPro, i.e. it commutes with the strengths of A and TAMBARA (AA).
Using the abstraction function absw from the Cayley representation for weak arrows we
can define an abstraction function for our arrow representation:

abs = TAMBARA (AA)
TAMBARA(absw) // TAMBARA A

ω1 // A

This is a left inverse to rep, and therefore, rep is a monomorphism. This proves that
TAMBARA (AA) is a representation for (A,stA).

ZU064-05-FPR main 20 September 2017 18:33

36 E. Rivas and M. Jaskelioff

The implementation in Haskell of the representation, after inlining some definitions in
order to simplify the code, is as follows:

data Rep a x y = Rep (∀z′ z. a (y,z′) z→ a (x,z′) z)

instance Profunctor a⇒ Profunctor (Rep a)where
dimap f g (Rep x) = Rep (λy→ dimap (lift f) id (x (dimap (lift g) id y)))
where lift f (a,b) = (f a,b)

The representation constructs an arrow from any profunctor.

instance Profunctor a⇒WeakArrow (Rep a)where
arr f = Rep (dimap (lift f) id)where lift f (a,b) = (f a,b)
Rep x ≫ Rep y = Rep (λv→ x (y v))

instance Profunctor a⇒ StrongProfunctor (Rep a)where
first (Rep x) = Rep (λ z→ dimap α−1 id (x (dimap α id z)))
where α (x,(y,z)) = ((x,y),z)

α−1 ((x,y),z) = (x,(y,z))

Since we verified that the strength is compatible with the weak arrow structure, we may
declare the Arrow instance.

instance Profunctor a⇒ Arrow (Rep a)

Any arrow a can be embedded into Rep a using the arrow morphism rep. Moreover,
abs◦ rep = id.

rep :: Arrow a⇒ a x y→ Rep a x y
rep x = Rep (λ z→ first x ≫ z)

abs :: Arrow a⇒ Rep a x y→ a x y
abs (Rep x) = arr fst−1 ≫ x (arr fst)

where fst−1 y = (y,())

8.7 The Final Picture

The following picture summarises the different categories and functors presented in the
previous sections:

Endo◦

DAY

��

KLEISLI

&&
SPro U // Pro

PASTRO

>
ff

TAMBARA

>ww

Endo? CAYLEY

88

Both KLEISLI and CAYLEY map into SPro: a functor mapping to Pro can be recovered by
post-composing with U . There is an alternative functor mapping from Endo◦ to SPro by
composing DAY with CAYLEY. All the functors in the picture are lax monoidal, except for
PASTRO which is oplax monoidal, as indicated by the squiggly arrow.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 37

9 Conclusion

We have shown how monads, applicative functors and arrows can be seen in a uniform
manner as monoids in a monoidal category. We exploited this uniformity in order to obtain
free constructions and representations for the three notions of computation as instances of
more general constructions. All these constructions were implemented in Haskell rather
straightforwardly, showing that the ideas can be transferred to code without difficulty. The
representations for applicative functors and arrows are new. We expect them to optimise
code in the same cases for which the codensity transformation and difference lists work
well: when the binary operation of the monoid is expensive on its first argument and,
therefore, we want to associate a sequence of computations to the right. However, an in-
depth analysis of the performance of the new representations is left as future work, which
could be done by benchmarking, or through formal verification (Hackett & Hutton, 2015).

The constructions presented for monads are well known (Mac Lane, 1971). Day has
shown the equivalence of lax monoidal functors and monoids with respect to the Day
convolution (Day, 1970). However, in the functional programming community, this fact is
not well-known. The construction of free applicative functors is described by Capriotti and
Kaposi (2014). While they provide plenty of motivation for the use of the free applicative
functor, we give a detailed description of its origin, as we arrive at it by instantiating a
general description of free monoids to the category of endofunctors which is monoidal
with respect to the Day convolution.

There are several works analysing the formulation of arrows as monoids (Jacobs et al.,
2009; Atkey, 2011; Asada, 2010; Asada & Hasuo, 2010). We differ from their work in
our treatment of the strength. We believe our approach leads to simpler definitions, as
only standard monoidal categories are used. Moreover, our definition of the free arrow is
possible thanks to this simpler approach.

Jaskelioff and Moggi (2010) use the Cayley representation for monoids in a monoidal
category in order to lift operations through monoid transformers. However, they only
considered monads as instances.

For the sake of simplicity, we analysed the above notions of computations as Set func-
tors. However, for size reasons, many constructions were restricted to small functors, which
are extensions of functors from small categories. Alternatively, we could have worked with
accessible functors (Adámek & Rosický, 1994) (which are equivalent to small functors), or
we could have worked directly with functors from small categories, as it is done in relative
monads (Altenkirch et al., 2010). However, by working with small functors the category
theory is less heavy and the implementation in Haskell is more direct.

In functional programming, for each of the three notions of computation that we con-
sidered, there are variants which add structure. For example, monads can be extended with
MonadPlus, applicative functors with Alternative, and arrows with ArrowChoice, to name
just a few. Rivas et al. (2015) analysed the cases of MonadPlus and Alternative based on
a generalisation of monoidal categories to categories with a notion of near-semiring.

The relation between the different monoidal categories that support monads, applicative
functors, and arrows, deserves a deeper analysis. For example, it would be interesting to
study the relation between monoidal categories supporting computational effects which are
not Set-based.

ZU064-05-FPR main 20 September 2017 18:33

38 E. Rivas and M. Jaskelioff

Unifying different concepts under one common framework is a worthy goal as it deepens
our understanding and it allows us to relate, compare, and translate ideas. It has long been
recognised that category theory is an ideal tool for this task (Reynolds, 1980) and this
article provides a bit more evidence of it.

Acknowledgements

We thank Ondřej Rypáček and Jennifer Hackett for their insightful comments on an early
version of this document, and the anonymous reviewers for their helpful feedback. We
also thank Tom Schrijvers, Tarmo Uustalu, and the rest of the members of IFIP WG 2.1
for their encouragement. This work was partially funded by the Agencia Nacional de Pro-
moción Cientı́fica y Tecnológica (PICT 2009–15) and Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET).

References

Abbott, Michael, Altenkirch, Thorsten, & Ghani, Neil. (2003). Categories of containers. Pages
23–38 of: Proceedings of the 6th International Conference on Foundations of Software Science
and Computation Structures and Joint European Conference on Theory and Practice of Software.
FOSSACS’03/ETAPS’03. Berlin, Heidelberg: Springer-Verlag.

Adámek, Jiři, & Rosický, Jiři. (1994). Locally presentable and accessible categories. London
Mathematical Society Lecture Notes, no. 189. Cambridge University Press.

Altenkirch, Thorsten, Chapman, James, & Uustalu, Tarmo. (2010). Monads need not be
endofunctors. Pages 297–311 of: Ong, Luke (ed), Foundations of Software Science and
Computational Structures. Lecture Notes in Computer Science, vol. 6014. Springer Berlin
Heidelberg.

Asada, Kazuyuki. (2010). Arrows are strong monads. Pages 33–42 of: Capretta, Venanzio, &
Chapman, James (eds), Proceedings of the Third ACM SIGPLAN Workshop on Mathematically
Structured Functional Programming. MSFP ’10. ACM.

Asada, Kazuyuki, & Hasuo, Ichiro. (2010). Categorifying computations into components via arrows
as profunctors. Electronic Notes in Theoretical Computer Science, 264(2), 25–45.

Atkey, Robert. (2011). What is a categorical model of arrows? Electronic Notes in Theoretical
Computer Science, 229(5), 19–37.

Bainbridge, E.S., Freyd, Peter J., Scedrov, Andre, & Scott, Philip J. (1990). Functorial
polymorphism. Theoretical Computer Science, 70(1), 35–64.

Barr, Michael, & Wells, Charles. (1985). Toposes, triples and theories. Grundlehren der
Mathematischen Wissenschaften, vol. 278. Springer-Verlag.

Bénabou, Jean. (1973). Les distributeurs: d’après le cours de questions spéciales de mathématique.
Rapport (Université catholique de Louvain (1970-). Séminaire de mathématique pure). Institut de
mathématique pure et appliquée, Université catholique de Louvain.

Bird, Richard, Gibbons, Jeremy, Mehner, Stefan, Voigtländer, Janis, & Schrijvers, Tom. (2013).
Understanding idiomatic traversals backwards and forwards. Pages 25–36 of: Proceedings of
the 2013 ACM SIGPLAN Symposium on Haskell. Haskell ’13. ACM.

Capriotti, Paolo, & Kaposi, Ambrus. (2014). Free applicative functors. Pages 2–30 of: Levy, Paul, &
Krishnaswami, Neel (eds), Proceedings 5th Workshop on Mathematically Structured Functional
Programming. EPTCS, vol. 153.

Cayley, Arthur. (1854). On the theory of groups as depending on the symbolic equation θ n = 1.
Philosophical Magazine, 7(42), 40–47.

ZU064-05-FPR main 20 September 2017 18:33

Notions of Computation as Monoids 39

Danielsson, Nils Anders, Hughes, John, Jansson, Patrik, & Gibbons, Jeremy. (2006). Fast and loose
reasoning is morally correct. Pages 206–217 of: Morrisett, J. Gregory, & Jones, Simon L. Peyton
(eds), Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM.

Day, Brian. (1970). On closed categories of functors. Pages 1–38 of: Reports of the Midwest Category
Seminar IV. Lecture Notes in Mathematics, vol. 137. Springer Berlin Heidelberg.

Day, Brian. (1973). Note on monoidal localisation. Bulletin of the Australian Mathematical Society,
8(2), 1–16.

Day, Brian J., & Kelly, G. Maxwell. (1969). Enriched functor categories. Pages 178–191 of: Reports
of the Midwest Category Seminar III. Lecture Notes in Mathematics, vol. 106. Springer Berlin
Heidelberg.

Day, Brian J., & Lack, Stephen. (2007). Limits of small functors. Journal of Pure and Applied
Algebra, 210(3), 651–663.

Dubuc, Eduardo J. (1974). Free monoids. Journal of Algebra, 29(2), 208–228.
Hackett, Jennifer, & Hutton, Graham. (2015). Programs for cheap! Pages 115–126 of: 30th annual

ACM/IEEE Symposium on Logic in Computer Science. IEEE.
Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). Arrows, robots, and

functional reactive programming. Pages 159–187 of: Summer School on Advanced Functional
Programming 2002, Oxford University. Lecture Notes in Computer Science, vol. 2638. Springer-
Verlag.

Hughes, John. (1986). A novel representation of lists and its application to the function “reverse”.
Information Processing Letters, 22(3), 141–144.

Hughes, John. (2000). Generalising monads to arrows. Science of Computer Programming, 37(1-3),
67–111.

Hutton, Graham, Jaskelioff, Mauro, & Gill, Andy. (2010). Factorising folds for faster functions.
Journal of Functional Programming, 20(Special Issue 3-4), 353–373.

Jacobs, Bart, Heunen, Chris, & Hasuo, Ichiro. (2009). Categorical semantics for arrows. Journal of
Functional Programming, 19(3-4), 403–438.

Jacobson, Nathan. (2009). Basic Algebra I. Basic Algebra. Dover Publications, Incorporated.
Jaskelioff, Mauro. (2009). Modular monad transformers. Pages 64–79 of: Castagna, Giuseppe (ed),

Programming Languages and Systems, 18th European Symposium on Programming. Lecture
Notes in Computer Science, vol. 5502. Springer.

Jaskelioff, Mauro, & Moggi, Eugenio. (2010). Monad transformers as monoid transformers.
Theoretical Computer Science, 411(51-52), 4441–4466.

Jaskelioff, Mauro, & Rypacek, Ondrej. (2012). An investigation of the laws of traversals. Pages
40–49 of: Chapman, James, & Levy, Paul Blain (eds), Proceedings of the Fourth Workshop on
Mathematically Structured Functional Programming. EPTCS, vol. 76.

Kelly, G. Maxwell. (1980). A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society,
22(01), 1–83.

Kelly, G. Maxwell, & Power, A. John. (1993). Adjunctions whose counits are coequalizers, and
presentations of finitary enriched monads. Journal of Pure and Applied Algebra, 89(1–2), 163–
179.

Lack, Stephen. (2010). Note on the construction of free monoids. Applied Categorical Structures,
18(1), 17–29.

Li, Peng, & Zdancewic, Steve. (2010). Arrows for secure information flow. Theoretical Computer
Science, 411(19), 1974–1994.

Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2011). Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electronic Notes on Theoretical Computer Science, 229(5), 97–117.

ZU064-05-FPR main 20 September 2017 18:33

40 E. Rivas and M. Jaskelioff

Mac Lane, Saunders. (1971). Categories for the working mathematician. Graduate Texts in
Mathematics, no. 5. Springer-Verlag. Second edition, 1998.

McBride, Connor, & Paterson, Ross. (2008). Applicative programming with effects. Journal of
Functional Programming, 18(01), 1–13.

Moggi, Eugenio. (1989). Computational lambda-calculus and monads. Pages 14–23 of: Proceedings
of the Fourth Annual Symposium on Logic in Computer Science. IEEE Computer Society.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and Computation, 93(1),
55–92.

Moggi, Eugenio. (1995). A semantics for evaluation logic. Fundamenta Informaticae, 22(1/2), 117–
152.

Pastro, Craig, & Street, Ross. (2008). Doubles for monoidal categories. Theory and Applications of
Categories, 21, 61–75.

Paterson, Ross. (2012). Constructing applicative functors. Pages 300–323 of: Gibbons, Jeremy,
& Nogueira, Pablo (eds), Mathematics of Program Construction. Lecture Notes in Computer
Science, vol. 7342. Springer Berlin Heidelberg.

Peyton Jones, Simon L., Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey. (2006).
Simple unification-based type inference for GADTs. Pages 50–61 of: Reppy, John H., & Lawall,
Julia L. (eds), Proceedings of the 11th ACM SIGPLAN International Conference on Functional
Programming. ACM.

Reynolds, John C. (1980). Using category theory to design implicit conversions and generic
operators. Pages 211–258 of: Jones, Neil D. (ed), Semantics-Directed Compiler Generation.
Lecture Notes in Computer Science, vol. 94. Springer.

Rivas, Exequiel, Jaskelioff, Mauro, & Schrijvers, Tom. (2015). From monoids to near-semirings:
the essence of MonadPlus and Alternative. Pages 196–207 of: Falaschi, Moreno, & Albert, Elvira
(eds), Proceedings of the 17th International Symposium on Principles and Practice of Declarative
Programming. ACM.

Swierstra, Wouter, & Altenkirch, Thorsten. (2007). Beauty in the beast. Pages 25–36 of: Keller,
Gabriele (ed), Proceedings of the ACM SIGPLAN Workshop on Haskell. Haskell ’07. ACM.

Vizzotto, Juliana, Altenkirch, Thorsten, & Sabry, Amr. (2006). Structuring quantum effects:
Superoperators as arrows. Mathematical Structures in Computer Science, 16(3), 453–468.

Voigtländer, Janis. (2008). Asymptotic improvement of computations over free monads. Pages
388–403 of: Audebaud, Philippe, & Paulin-Mohring, Christine (eds), Proceedings of the 9th
International Conference on Mathematics of Program Construction. Lecture Notes in Computer
Science, vol. 5133. Springer-Verlag.

	Introduction
	Monoidal Categories
	Monoids in Monoidal Categories
	Cayley Representation of a Monoid

	Monads as Monoids
	Exponentials in Endo
	Free Monads
	Cayley Representation of Monads

	Ends and Coends
	Ends
	Coends
	Yoneda Lemma in End and Coend Form

	Applicative Functors as Monoids
	Monoids in Endo
	Exponentials in Endo
	Free Applicative Functor
	Cayley Representation for Applicative Functors

	Weak Arrows as Monoids
	Exponentials in Pro
	Free Weak Arrows
	Cayley Representation of Weak Arrows

	Arrows as Monoids
	Exponentials in SPro
	Free Arrows

	On Functors Between Monoidal Categories
	The Cayley Monoidal Functor
	The Kleisli Monoidal Functor
	The Day Monoidal Functor
	The Reversed Monoid
	The Tambara and Pastro Monoidal Functors
	An Application of the Tambara Functor: A Representation of Arrows
	The Final Picture

	Conclusion
	References

