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Abstract

We present a novel systematic method to obtain componentwise ultimate bounds in perturbed sampled-data systems, especially when the
perturbations arise due to quantization. The proposed method exploits the system geometry as well as the perturbation structure, and takes
intersample behavior into account. The main features of the method are its systematic nature, whereby it can be readily computer coded,
without requiring adjustment of parameters for its application, and its suitability for dealing with highly structured perturbation schemes,
whereby the information on the perturbation structure is directly taken into account. The latter feature distinguishes the method from other
approaches that require a bound on the norm of the perturbation and thus disregard information on the perturbation structure. We apply
the method to a numerical example taken from the literature to illustrate its simplicity and potential.
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1 Introduction

This paper deals with the computation of guaranteed ulti-
mate bounds for sampled-data systems that involve quanti-
zation. Quantization in control systems has been studied for
nearly 50 years (Bertram, 1958). The usual approach to an-
alyzing the effects of quantization on a digital control sys-
tem has been to regard a quantized variable as a perturbed
copy of the unquantized variable, where the perturbation is
modelled as white noise (Williamson, 1991). This approach
leads to statistical analysis of the effects of quantization and
has proven very useful in control applications. However, sta-
tistical description of the quantization error may lead to un-
necessary difficulties if only a guaranteed ultimate bound
is sought. Methods that employ a deterministic framework
also exist (see e.g., Yakowitz and Parker, 1973; Green and
Turner, 1988; Miller et al., 1989). These latter methods also
regard a quantized variable as a perturbed copy of the un-
quantized variable.

More recently, sampled-data systems involving quantization
have attracted renewed interest due to the success of net-
worked control systems (see Antsaklis and Baillieul, eds.,
2004, and the references therein). Many works in this emerg-
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ing area explicitly consider quantization, without regarding
a quantized variable as a perturbed copy (e.g., Wong and
Brockett, 1999; Elia and Mitter, 2001; Ishii and Francis,
2003; Ishii et al., 2004; Ishii and Başar, 2005). Some of these
works ensure the asymptotic stability of the resulting closed-
loop system by, e.g., employing quantizers with increasingly
higher precision as the state approaches the origin (as with
logarithmic quantizers in Elia and Mitter, 2001). Our focus
in this paper is on cases where asymptotic stability cannot
be ensured and thus computing an ultimate bound on the
system trajectories is of interest. We will approach the prob-
lem by regarding a quantized variable as a perturbed copy
of the corresponding unquantized variable, as is the case in
the works mentioned in the previous paragraph. However,
we will bound the perturbations introduced by the quantiz-
ers in a novel (and tighter) form and will apply our results
to an example taken from Ishii et al. (2004).

For purely continuous- or discrete-time perturbed systems,
i.e., in the absence of sampling and hold devices in the con-
trol loop, a typical approach to estimate ultimate bounds is
via level sets of suitable Lyapunov functions (Khalil, 2002).
This approach has the advantage of being very general and
powerful and the disadvantage of requiring the obtention
of a suitable Lyapunov function. For linear systems, how-
ever, quadratic Lyapunov functions can be easily computed.
A closely related approach to estimate ultimate bounds is

Preprint submitted to Automatica 28 November 2006



via the input-to-state stability (ISS) framework for systems
with disturbances (Sontag and Wang, 1995; Jiang and Wang,
2001). In the context of quantized sampled-data systems, this
framework could be employed by considering the quanti-
zation effects as disturbances, obtaining a discrete-time ISS
characterization for the sampled-data system at the sampling
instants (Huang et al., 2005), and then using the results of
Nešić et al. (1999) to derive an ISS characterization for the
sampled-data system. However, this methodology is not di-
rectly applicable if the disturbance bounds may depend on
the system state (as is the case when considering logarith-
mic quantizers). In addition, both the Lyapunov function
and ISS methods require a bound on the norm of the per-
turbation and may lead to conservative bounds if important
information on the structure of the perturbation is lost when
bounding its norm.

A method to estimate ultimate bounds that does not re-
quire the selection of a Lyapunov function, nor bounding
the norm of the perturbation, was introduced in Kofman
(2005) for continuous-time linear time-invariant (LTI) sys-
tems and extended in Kofman et al. (2007). These works
presented a new framework to obtain closed-form ultimate
bound formulae based on the use of componentwise per-
turbation bounds and componentwise analysis of the sys-
tem. As compared with the bounds obtained by means of
the standard quadratic-Lyapunov-function approach, the ex-
amples in Kofman (2005) and Kofman et al. (2007) show
that this componentwise framework may in some cases pro-
vide much tighter bounds. This componentwise framework
has been developed for purely continuous- and discrete-time
systems and cannot be directly applied to sampled-data sys-
tems. Moreover, when the perturbation bound depends on
the system state, Kofman et al. (2007) provides ultimate
bounds that are only locally valid.

In this context, the main contribution of the current paper
is a systematic method to obtain componentwise ultimate
bounds in perturbed sampled-data systems, which provides
bounds that are globally valid, utilizes a novel form for the
perturbation bound, and is especially suited to perturbations
introduced by quantization. We follow ideas similar to those
used in Kofman (2005) and Kofman et al. (2007), and derive
new results that can be directly applied to perturbed sampled-
data systems to obtain global ultimate bounds. These bounds
take intersample behavior into account and can be calculated
in a systematic way, i.e., they do not require adjustment
of parameters or selection of suitable norms or Lyapunov
functions.

Notation. For a matrix M with (real or complex) entries
Mi,j , let |M | and Re(M) denote the elementwise magnitude
and real part, respectively; M ≤ N and M < N the sets
of componentwise inequalities Mi,j ≤ Ni,j and Mi,j <
Ni,j , respectively, and similarly for M ≥ N and M > N ;
R+, R+,0 the sets of positive and nonnegative real numbers,
respectively; and ρ(M) the spectral radius of matrix M .

2 The quantized sampled-data system

We consider the sampled-data system depicted in Figure 1,
described by

Sampling
T

Hold
yp
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yc uc

Quantization
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Fig. 1. Quantized sampled-data system.

ẋp(t) = Apxp(t) + Bpup(t), yp(t) = Cpxp(t), (1a)
xc(k + 1) = Acxc(k) + Bcuc(k), (1b)
yc(k) = Ccxc(k) + Dcuc(k), (1c)
uc(k) = yp(tk) + ∆yp(tk), (1d)
up(t) = yc(k) + ∆yc(k), tk ≤ t < tk + T, (1e)

where xp(t) ∈ RNp , up(t) ∈ RM and yp(t) ∈ RP are the
continuous-time plant state, input and output, respectively,
xc(k) ∈ RNc , uc(k) ∈ RP and yc(k) ∈ RM are the discrete-
time controller state, input and output, respectively, ∆yp and
∆yc are the perturbations introduced by the quantizers at
the plant and controller outputs, respectively, T is the sam-
pling period, and tk = kT for k = 0, 1, . . .. Each individual
connection signal between plant and controller has an inde-
pendent quantizer, each of which can have different features
and can be of uniform, logarithmic or semipractical loga-
rithmic type.

Discrete-time model.

The model of the system at the sampling instants is

xk+1 = Adxk + Bd∆yk, where (2)

xk ,

[
xp(tk)

xc(k)

]
∈ Rn, ∆yk ,

[
∆yp(tk)

∆yc(k)

]
∈ RS, (3)

n , Np + Nc, S , P + M. (4)

and Ad and Bd can be directly obtained from (1) as

Ad =
[

A11 A12
BcCp Ac

]
, Bd =

[
B11 B12
Bc 0

]
, (5)

A11 , eApT + Ψ(T)BpDcCp, A12 , Ψ(T)BpCc, (6)

B11 , Ψ(T)BpDc, B12 , Ψ(T)Bp, (7)

Ψ(t) ,
∫ t

0

eApτdτ. (8)
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In the remainder of this section, we derive componentwise
bounds on the perturbation vector ∆yk [see (3)], according
to the type and features of the quantizers employed for each
signal.

Individual quantizer perturbations.

We regard a scalar quantized variable, q(s), as a perturbed
copy of the unquantized variable: q(s) = s + ∆s. We
next derive bounds on ∆s when q is uniform, logarithmic
or semipractical logarithmic. A uniform quantizer has uni-
formly spaced levels. In this case, the quantizer perturbation
∆s can be bounded by |∆s| ≤ u◦ , α/2, where α is the
quantization step. A logarithmic quantizer has levels in a set
U ⊂ R defined as

U = {±ρ−iu◦, i = 0,±1,±2, . . . } ∪ {0}, (9)

where 0 < ρ < 1 and u◦ > 0. The quantizer perturbation
satisfies |∆s| ≤ δ|s|, where δ = 1−ρ

1+ρ . Practical logarithmic
quantizers arise from truncating a logarithmic quantizer so
that the resulting quantizer has only a finite number of levels.
We consider a semipractical quantizer in the sense that it is
truncated only towards the origin, i.e., it has values in the
set U = {±ρ−iu◦, i = 0, 1, 2, . . .} ∪ {0} [cf. (9)], where
0 < ρ < 1 and u◦ > 0. In this case,

|∆s| ≤ max
{

δ|s|, u◦

1 + δ

}
. (10)

Note that (10) encompasses the three types of quantizer per-
turbations considered, i.e., the other perturbation bounds can
be obtained from (10) by adjusting δ and u◦.

Remark 1 Without considering overflow, the perturbation
bound (10) can accommodate the effects of analog-to-digital
conversion using fixed- or floating-point representation. The
form of the perturbation bound (10) is one key difference in
our approach, since it can be made tighter than the usual
bound for the perturbation introduced when considering
floating-point representations, of the form |∆s| ≤ δ|s| + γ
(see e.g., Miller et al., 1988).

Quantizer perturbations in vector form.

Using the single-quantizer-perturbation bound (10) and
defining

Γp , diag(δ1, . . . , δP), Γc , diag(δP+1, . . . , δS), (11)

θp ,
[

u◦1
1+δ1

· · · u◦P
1+δP

]′
θc ,

[
u◦P+1

1+δP+1
· · · u◦S

1+δS

]′
(12)

where δi and u◦i correspond to the quantizer at the i-th plant
output for i = 1, . . . , P, and at the (i−P)-th controller output
for i = P + 1, . . . , S, it follows that

|∆yp(tk)| ≤ max{Γp|yp(tk)|, θp}, (13)
|∆yc(k)| ≤ max{Γc|yc(k)|, θc}, (14)

where the maximum is taken componentwise. In (13)–(14),
yp(tk) and yc(k) satisfy, from (1),

yp(tk) = Cpxp(tk), (15)
yc(k) = Ccxc(k) + DcCpxp(tk) + Dc∆yp(tk). (16)

In Section 3, we will need bounds on ∆yp(tk) and ∆yc(k)
in terms of a transformed version of the state. Therefore, let
V ∈ Cn×n denote an arbitrary invertible matrix and con-
sider the transformation xk = V zk, where V is partitioned
according to xk in (3) as

V = [V ′
p V ′

c ]′, where Vp ∈ CNp×n and Vc ∈ CNc×n. (17)

Operating on (13)–(16), and using (17) yields 2

|∆yp(tk)| ≤ Y (|zk|) , max{Θp|zk|, θp}, (18)

|∆yc(k)| ≤ max
{

Θc|zk|+ ΘsY (|zk|), θc

}
, (19)

Θp , Γp|CpVp|, Θs , Γc|Dc|, (20)

Θc , Γc|CcVc + DcCpVp|. (21)

3 Ultimate bounds for the sampled-data system

3.1 Discrete-time state trajectory bound

The following theorem provides componentwise bounds on
the state of the perturbed discrete-time system (2)–(3) when
the perturbation ∆yk is bounded as in (18)–(19). In Sec-
tion 3.2, we will derive componentwise bounds on the plant
states that, in addition, take account of intersample behavior.

Theorem 2 Consider system (2)–(3) and express Ad in Jor-
dan canonical form as Ad = V ΛV −1. Let ∆yk be bounded
as in (18)–(19) for all k ≥ 0, where zk = V −1xk, Θp ∈
RP×n

+,0 , Θc ∈ RM×n
+,0 , θp ∈ RP

+,0, θc ∈ RM
+,0, and Θs ∈ RM×P

+,0 .
Define

M , |Λ|+ |V −1Bd|Θ, (22)

Θ ,
[

Θp

Θc+ΘsΘp

]
, θ ,

[
θp

θc+Θsθp

]
, (23)

and suppose that ρ(M) < 1. Then, ρ(|Λ|) < 1. Define

β,(I−M)−1|V −1Bd| θ, γ,(I−|Λ|)−1|V −1Bd| [θ′p θ′c]
′. (24)

Then β ≥ 0 and γ ≥ 0. Consider the map Y (·) defined in
(18), the map T : Rn

+,0 → Rn
+,0 defined by

T (w) = |Λ|w + |V −1Bd|
[

max{Θpw,θp}
max{Θcw+ΘsY (w),θc}

]
, (25)

and the sequence {br}∞r=0 defined by b0 , β and br ,
T r(β) for r = 1, 2, . . . Then,

2 For an introduction to the properties of matrices with nonneg-
ative entries, see, e.g., Horn and Johnson (1985, §8.1).

3



1. 0 ≤ br ≤ br−1 for r = 1, 2, . . . and b∞ , limr→∞ T r(β)
exists and satisfies 0 ≤ γ ≤ b∞ ≤ β.

2. Fix any x0 ∈ Rn and define the sequence {β̄r}∞r=0 by
β̄r = max{|V −1x0|, br}. Then, for all k ≥ 0 and all
r ≥ 0,
a) |V −1xk| ≤ br+k + Mk(β̄r − br).
b) |xk| ≤ |V |br+k + |V |Mk(β̄r − br).

3. For any x0 ∈ Rn, lim supk→∞ |V −1xk| ≤ b∞ and
lim supk→∞ |xk| ≤ |V |b∞, where the lim sup operates
componentwise.

PROOF. Note that |Λ|, |V −1Bd|, Θ and M all have non-
negative entries. Then, from (22), it follows that ρ(M) ≥
ρ(|Λ|)+ρ(|V −1Bd|Θ) (see, e.g., Horn and Johnson, 1985,
§8.1), and by assumption, ρ(M) < 1. Since the spectral ra-
dius is a nonnegative quantity, it follows that ρ(|Λ|) < 1.
Note then that I−M and I−|Λ| are invertible and β and γ in
(24), are well defined. Define the map TM : Rn

+,0 → Rn
+,0

as
TM (w) = Mw + |V −1Bd| θ. (26)

Note that, for any w ∈ Rn
+,0, TM (w) ≥ 0 and hence

T r
M (w) ≥ 0 for all r ≥ 0. Since ρ(M) < 1, then

limr→∞ T r
M (w) = β ≥ 0 for all w ∈ Rn

+,0. The proof that
γ ≥ 0 follows similarly by considering the map defined by
T|Λ|(w) = |Λ|w + |V −1Bd|[θ′p θ′c]

′.

1. Since the matrices |Λ|, |V −1Bd|, Θp, Θc, and Θs, and the
vectors θp, θc all have nonnegative entries, it follows that

w1 ≤ w2 ⇒ T (w1) ≤ T (w2), and (27)
T (w) ≤ |Λ|w + |V −1Bd|(Θw + θ) = TM (w), (28)

for all w1, w2, w ∈ Rn
+,0. From (24) and (26), note that

β = TM (β), whence, using (28), b1 = T (β) ≤ β = b0.
Applying (27) iteratively to the latter inequality yields br =
T r(β) ≤ T r−1(β) = br−1. The sequence {br}∞r=0 is thus
componentwise nonincreasing. Moreover, this sequence is
componentwise lower bounded by zero since br = T r(β),
β ≥ 0 and T : Rn

+,0 → Rn
+,0. Hence, {br}∞r=0 converges

to some point b∞ = limr→∞ br satisfying 0 ≤ b∞ ≤ β.
From (25) and since T (b∞) = b∞, note that b∞ ≥ |Λ|b∞+
|V −1Bd|[θ′p θ′c]

′. Then, (I− |Λ|)b∞ ≥ |V −1Bd|[θ′p θ′c]
′ and

therefore, from (24), b∞ ≥ γ, since |Λ| is in Jordan form,
has nonnegative entries, and ρ(|Λ|) < 1.

2. Let xk = V zk. Taking magnitudes and using (2)–(3),
(18)–(19), and (25) yields

|zk+1| ≤ |Λ| |zk|+ |V −1Bd||∆yk| ≤ T (|zk|). (29)

Using (27), (29), and noting that |V −1x0| = |z0| ≤ β̄r for
all r ≥ 0, then

|zk| ≤ T k(|z0|) ≤ T k(β̄r), ∀k, r ≥ 0. (30)

Claim: Let w, y ∈ Rn
+,0 and suppose that w ≥ y ≥ 0. Then,

0 ≤ T (w)− T (y) ≤ M(w − y). For a proof of this claim,
see Haimovich (2006, §6).

Since β̄r ≥ br ≥ 0, by the claim then 0 ≤ T (β̄r) −
T (br) ≤ M(β̄r − br). Then, T (β̄r) ≥ T (br) ≥ 0 and us-
ing the claim again yields T 2(β̄r)− T 2(br) ≤ M(T (β̄r)−
T (br)) ≤ M2(β̄r − br). Iterating this procedure yields
T k(β̄r)−T k(br) ≤ Mk(β̄r − br) and hence, operating and
combining with (30) yields

|zk| ≤ T k(β̄r) ≤ Mk(β̄r − br) + T k(br).

Part 2 a) then follows straightforwardly since |zk| =
|V −1xk| and T k(br) = br+k. To prove 2 b) note that
|xk| ≤ |V ||V −1xk| and use 2 a).

3. From 2 a), we can write

lim sup
k→∞

|V −1xk| ≤ lim sup
k→∞

[
Mk(β̄r − br) + br+k

]
≤ lim sup

k→∞
Mk(β̄r − br) + lim sup

k→∞
br+k.

Since limk→∞ Mk(β̄r − br) = 0 because ρ(M) < 1, and
limk→∞ br+k = b∞ by part 1, then lim supk→∞ |V −1xk| ≤
b∞, establishing 3 a). To prove 3 b), use |xk| ≤ |V ||V −1xk|
in 3 a). 2

Theorem 2 provides a systematic method to compute com-
ponentwise bounds on the state trajectories of a discrete-
time system of the form (2)–(3) where the perturbation ∆yk

is bounded as in (18)–(19). In particular, if the matrices in
(18)–(19) have the form (20)–(21), then Theorem 2 provides
bounds for the quantized sampled-data system structure of
Figure 1 at the sampling instants. In addition, Theorem 2
part 3 directly provides global ultimate bounds on the sys-
tem state.

Remark 3 Combining parts 1 and 3 of Theorem 2, note that
lim supk→∞ |V −1xk| ≤ b∞ ≤ br, for any r ≥ 0. Therefore,
br can also be used to compute an ultimate bound for the
system. Such a bound, though being more conservative than
that corresponding to b∞, has the advantage of requiring
only r iterations of the map T defined in (25).

Remark 4 If |V −1x0| ≤ br for some r ≥ 0, then Theorem 2
parts 2 and 1 yield |V −1xk| ≤ br+k ≤ br, since in this case
β̄r = br. Therefore, each of the regions {x ∈ Rn : |V −1x| ≤
br}, 0 ≤ r ≤ ∞, is invariant under the system dynamics.

Remark 5 Theorem 2 requires that M in (22) have all its
eigenvalues in the open unit disc (ρ(M) < 1). Note then
that ρ(M) < 1 is a sufficient condition for global practical
stability of the perturbed discrete-time system considered,
i.e., for its trajectories to be ultimately bounded from any
initial condition. Moreover, since ρ(M) < 1 implies that
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ρ(|Λ|) = ρ(Λ) = ρ(Ad) < 1, then a necessary condition
for application of Theorem 2 is that the unperturbed discrete-
time system xk+1 = Adxk be stable.

3.2 Ultimate bound with intersample

The following theorem combines the ultimate bound derived
in Theorem 2 part 3 with a bound on the variation of the
plant states between sampling instants, providing a compo-
nentwise ultimate bound on the plant states of the sampled-
data system considered.

Theorem 6 Consider the perturbed sampled-data system of
eqs. (1) and its discrete-time description (2)–(8). Express Ad

in Jordan canonical form as Ad = V ΛV −1 and consider V
partitioned as in (17). Let the perturbation ∆yk be bounded
as in (18)–(19), where zk = V −1xk, Θp ∈ RP×n

+,0 , Θc ∈
RM×n

+,0 , θp ∈ RP
+,0, θc ∈ RM

+,0 and Θs ∈ RM×P
+,0 . Consider the

matrix M defined in (22)–(23) and suppose that ρ(M) < 1.
Then, given any ε ∈ Rn

+ and x0 ∈ Rn, there exists ` =
`(ε, x0) ≥ 0 such that for all t ≥ t` = `T,

|xp(t)| ≤ sup
0≤σ<T

[
x̄1

p(σ) + x̄2
p(σ) + x̄3

p(σ)
]
, where (31)

x̄1
p(σ) , |Vp+Ψ(σ)[ApVp+Bp(DcCpVp+CcVc)]|z̄, (32)

x̄2
p(σ) , |Ψ(σ)BpDc| ȳp, x̄3

p(σ) , |Ψ(σ)Bp| ȳc, (33)

z̄ , (b∞ + ε), ȳp , max{Θpz̄, θp}, (34)

ȳc , max{Θcz̄ + Θsȳp, θc}, (35)

the supremum in (31) is taken componentwise, and b∞ is
given by Theorem 2.

PROOF. The proof follows straightforwardly from the so-
lution of the system equations between sampling instants
and the application of componentwise operations. See
Haimovich (2006, §6) for details.

4 Examples

To illustrate the application of the method developed, we
consider the linearized model of the magnetic ball levita-
tion system used in Ishii et al. (2004) and Ishii and Francis
(2002, §4.7). The quantized sampled-data system consists
of a continuous-time plant with matrices

A =
[

0 1 0
2798 0 −19.6

0 0 −24.39

]
, B =

[
0
0

2.439

]
, (36)

that is regularly sampled every T = 4.605 · 10−3 seconds.
The state samples are multiplied by the feedback gain
K = [ 10315.67 195.02 −49.47 ] and then passed through a
scalar quantizer q to generate the control inputs at times
tk = kT, for all k ≥ 0. At times tk ≤ t < tk + T, the
plant input is held at its value by means of a zero-order

hold device. The quantizer q is defined in Ishii et al. (2004)
and is of the semipractical logarithmic type. To apply the
proposed ultimate bound estimation method to this system,
we regard this system as a perturbed sampled-data system
with describing equations (1), where the perturbations are
introduced by the quantizer and bounded as was described
in Section 2. To have a tight bound on the perturbation
introduced by the scalar quantizer q in Ishii et al. (2004),
we write q(s) = rq̃(s) and calculate the scalar r so that
∆s = q̃(s) − s satisfies a tight bound of the form (10).
Straightforward calculations yield r = 1.1289, δ = 0.2806
and u◦ = 0.5775. We next put the system into the form
(1), with the perturbation bounded as in (18)–(19). We thus
have a continuous-time plant of equation (1a) with Ap = A,
Bp = Br and Cp = I3, and a static discrete-time controller
of equation (1c) with Dc = K and zero Cc. We also have
(1d)–(1e), and note that Np = 3, Nc = 0, M = 1, P = 3,
n = Np + Nc = 3 and S = P + M = 4. The discrete-time
model (2)–(8) is then given by

xk = xp(tk) Ad = A11 Bd = [B11 B12]. (37)

We express Ad in Jordan canonical form as Ad = V ΛV −1

and note that the partition of V in (17) is just V = Vp ∈
C3×3, since Nc = 0. From (11) and (12), and since there
is no quantization at the plant outputs, we have Γp = 03×3

and θp = 03×1. Then, from (20), Θp = 03×3. From (11)
and (12), we have Γc = δ and θc = u◦/(1 + δ). Also, from
(20), Θc = Γc|KVp|. We compute the matrix M in (22) and
verify that ρ(M) < 1. Then, using Theorem 2, we have β =
[0.1121 0.0336 0.0507]′ and γ = [6.067 1.817 2.745]′ ·10−2.
Iteration of the map T defined in (25) from the initial condi-
tion β yields (numerically) b∞ = γ = [6.067 1.817 2.745]′ ·
10−2. Application of Theorem 2 part 3 yields

lim sup
k→∞

|xp(tk)| ≤ [9.2 363.5 862.2]′ · 10−4. (38)

Moreover, from Theorem 6 using ε = [1 1 1]′ · 10−10, there
exists ` = `(ε, x0) ≥ 0 such that for all t ≥ t` = `T,

|xp(t)| ≤ [9.2 363.5 862.2]′ · 10−4. (39)

We observe some interesting features of this example. First,
note that we have numerically obtained b∞ = γ. Hence, the
lower bound on the discrete-time componentwise ultimate
bound provided by Theorem 2 is achieved. Second, note that
the bound (39), that takes account of intersample behavior,
is identical to the bound (38), which is only valid at the
sampling instants. The equality of these bounds shows that,
in this example, there is no conservativeness in the bounding
procedure of Theorem 6.

In Ishii et al. (2004), a randomized algorithm is developed
that reduces conservatism in the analysis of sampled-data
systems with quantizers. The approach in Ishii et al. (2004)
can reduce conservatism not only in the ultimate bounds for
a system, but also in the required sampling period. In addi-
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tion, a guaranteed decay rate to the ultimate bound is consid-
ered. Here, we are only interested in comparing the ultimate
bound obtained in Ishii et al. (2004) with the component-
wise bound (39). The ultimate bound obtained in Ishii et al.
(2004) is, using our notation, ‖xp(t)‖ ≤ 0.053, for t ≥ t`′ .
From (39), it follows that ‖xp(t)‖ ≤ 0.0936, for t ≥ t`. It is
not surprising, perhaps, that the bound obtained in Ishii et al.
(2004) is better than that provided by our method, since the
algorithm in Ishii et al. (2004) involves the analysis of in-
dividual state trajectories. On the other hand, note that the
componentwise bound (39) gives a tighter bound on the first
two components of the state, which represent the position
and velocity of the ball in the magnetic levitation system. In
particular, the ultimate bound on the ball position, 9.2·10−4,
is more than 50 times lower than 0.053.

To gain insight into how conservative our results may be,
we have simulated the system from 200 initial conditions
selected randomly from a uniform distribution in the cube
[−0.1, 0.1]3 ∈ R3. Our simulations show that after 1 sec-
ond of simulation time (more than 200 sampling instants),
the state trajectories ultimately converged in all cases to the
region |x| ≤ [1.3 4.4 203.9]′ · 10−4. Comparing this bound
with (39), it appears that the bound (39) is still very conser-
vative, especially the one corresponding to the second state
component. However, we note that not many existing results
can be directly and systematically applied to this example.

In an attempt to compare our results with other theoretical
results (not numerical as that of Ishii et al., 2004), we in-
tended to apply the method of Miller et al. (1988, 1989). For
this specific example, that method requires that the system at
the sampling instants be written as xk+1 = Adxk + P (xk),
where a suitable norm of the perturbation term P (xk) must
be bounded as an affine function of the corresponding norm
of the state. It can easily be shown that if either the Eu-
clidean or infinity norms are selected, then such result can-
not provide any useful ultimate bound.

5 Conclusions

We have developed a novel systematic method to obtain
componentwise ultimate bounds for perturbed sampled-data
systems, especially when the perturbations arise due to the
use of quantizers. This method is completely systematic,
without requiring adjustment of parameters or selection of,
e.g., appropriate probability density functions, norms or Lya-
punov functions in order to provide an ultimate bound for a
quantized sampled-data system. To the best of the authors’
knowledge, this is the first time that a systematic method
which can accommodate a setting as that depicted in Fig-
ure 1 with different quantizers in each signal has been pro-
posed in the literature. We have illustrated the simplicity and
potential of the method with a numerical example.
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