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Abstract studied in some early works [1, 12], and an extension for
stochastic DEVS with finite states was already proposed [8],

We introduce an extension of the classic Discrete there is not a general theory nor a formal theoretic support
Event System Specification (DEVS) formalism that includesfor modeling general stochastic DEVS models.
stochastic features. Based on the use of Probability Spaces Stochastic models play a fundamental role in discrete
the STochastic DEVS specification (STDEVS) provides aevent system theory. In fact, any system involving uncer-
formal framework for modeling and simulation of general tainties, unpredictable human actions or system failuzes r
non deterministic discrete event systems. The main theoretquires a non—deterministic treatment. Examples of stechas
ical properties of STDEVS are shown. We illustrate the usetic discrete event formalisms are Markov Chains, Queuing
of STDEVS in a simulation example that shows the potentialNetworks [3] and Stochastic Petri Nets [2]. These tools per-
of the new formalism to deal with problems of performance mit analyizing and simulating stochastic models in several
analysis in computer systems and data networks. applications.

The first attempt to define a general DEVS—based for-
malism for stochastic system was reported in [10]. In this
Keywords: Discrete Event Systems, Stochastic Systems. Paper, we continue with the preliminary work of [10] re-
defining the first idea of STDEVS proposed there, and de-
velopping a complete theory of stochastic DEVS.

The work is organized as follows. After recalling the
principles of DEVS and Probability Spaces, Section 2 re-
) ) defines the STDEVS formalism. Then, Section 3 shows
~ The DEVS formalism was developed by Bernard Zeigler 4t any DEVS model where the transition functions depend
in the mid—seventies [15, 16]. Being a general system theo-g random variables defines an equivalent STDEVS model.
retic ba_sed formalism, DE_VS can represe_nt all the systemsrpig property permits modeling STDEVS models without
whose mput/output. behavior can be described by Sequencefaking use of probability space theory and also provides a
of events. Thus, discrete event systems modeled by Finite, ma| framework for conventional DEVS simulation tools
State Automatas, Petri Nets, Grafcets, Statechartsgaft.,  hat make use of pseudo random sequence generators. Sec-
be also represented by DEVS models [17]. Moreover, dis- 5y 4 shows that STDEVS s closed under coupling, and,

crete time systems can be also represented by DEVS [16]. finqly, Section 5 illustrates the use of the new formalism
The generality of DEVS converted it into a widely used \ith a simulation example.

language to describe and to simulate most classes of discret

systems. Moreover, numerical integration methods thatap-y 1. DEVS Formalism

proximate continuous systems (differential equations) by

I_DEVS models ha_ve been developped [4] e_lnd several ap_lica— A DEVS model [16] processes an input event trajec-
tions and extensions of the DEVS formalism for modeling 14y and —according to that trajectory and to its own initial
and simulation of continuous and hybrid systems have been.,ditions— provokes an output event trajectory. Formally

proposed [6, 13]. Consequently, many DEVS-based mod-; pevsatomicmodel is defined by the following structure:
eling and simulation software tools have been developed in

recent years [18, 14, 5, 11]. M = (X,Y, S, 0int, Ocat; A, ta),

Nevertheless, a drawback of DEVS is that it is only for-
mally defined for deterministic systems which limits the
stochastic treatment of the systems under study. Although e X is the set of input eventvalues, i.e., the set of all the
the relationship between DEVS and stochastic systems was  values that an input event can take;

1. Introduction

where



e Y is the set of output event values; DEVS models are closed under coupling, i.e., the cou-

, pling of DEVS models defines an equivalent atomic DEVS
e S isthe set of state values;

model.
® Jint, Oext, A @ndta are functions which define the sys- .
tem dynamics. 1.2. Probability Spaces
Each possible state (s < S5) has an associatéime ad- We recall here some concepts of probability spaces [7].
vancecalculated by théme advance functiotu(s) (ta(s) : A sample spacé of a random experiment is a set that

S — ). Thetime advancés a nonnegative real number includes all the possible outcomes of the experiment.
saying how long the system remains in a given state in ab-  An event space (also referred sigma—fieldor sigma—

sence of input events. algebrg F of the sample spacs is a nonempty collection
Thus, if the state adopts the value at timet,, after made of subsets .
ta(s1) units of time (i.e., at timea(s1) + ¢1) the system A sigma—field cannot be any arbitrary collection of sub-
performs annternal transition going to a new state;. The  sets ofS. A collectionF must satisfy the following proper-
new state is calculated as = d;nt(s1), Wheredins (dint : ties in order to constitute a sigma—field:
S — S) is calledinternal transition function
When the state goes from to s, an output event is o if ' € FthenF< € F (whereF is the complement
produced with valug; = A(s1), whereA (A: S — Y)is of Fin 5).

calledoutput function Functionsta, d;,:, and define the
autonomous behavior of a DEVS model.
When an input event arrives, the state changes instan{Notice that sincé’°U F' = S, the last two conditions imply
taneously. The new state value depends not only on thethatS € F and alsap € F.
input event value but also on the previous state value and A particular sigma—field ove$ is the collection of all
the elapsed time since the last transition. If the systers goe the subsets of (2°, called the power set o).
to the states; at timets and then an input event arrives at Let G be a particular collection of subsets 8f The
time t3 + e with valuez,, the new state is calculated as sigma—field generated 1§}, denotedM(G), is the smallest
sS4 = dext(83,€,21) (NOte thatta(ss) > e). In this case, we  sigma—field that contains all the elementgjof
say that the system performs axternal transition Func- A pair (S, F) consisting on a sample spag@nd a sigma
tion et (Jext : S x R x X — S) is called theexternal field F of subsets of is called a measurable space.
transition function No output event is produced during an A probability measure” on a measurable spacg, (F)
external transition. is an assignment of a real numh@(F') to every member
DEVS models can be coupled in a modular way [16]. A F of the sigma-field, such thdt obeys the following rules,
DEVS coupled modeN is defined by the structure:

o if ;e Ffori=1,...,00,thenalsdJ;°, F; € F

e Axiom 1. P(F) > Oforall F € F.

N = (XN, YN; Da {Md}v {Id}a {Zi,d}v SeleCt) e Axiom 2. P(S) - 1.

where: e Axiom3. If F; € F,i = 1,...,c are disjoint sets,

e Xy andYy are the sets of input and output values of thenP(U;Z, ) = 3272, P(Fy)
the coupled model. WhenF = M(G) (the sigma field is generated from a col-

e D s the set of component references, so that for eachl€ction §), the knowledge of*(G) with G € G defines

d € D, My is a DEVS model. function P for everyF' € F.
’ Finally, a probability spaceis defined as a triple

e Foreachd e DU{N}, I, C (DU{N})—{d}isthe (S, F, P) consisting of a sample spaée a sigma—fieldF

set of influencer models on subsystém of subsets of, and a probability measure defined for all
members ofF. Synthesizing, for every” € F, P(F) ex-
presses the probability that the experiment produces a sam-
plese FCS.

For eachi € 1,4, Z; 4 is the translation function, where

Xy — Xy ife=N
Zi,d: Y;HYN fd=N
Y, — X4 otherwise

2. STDEVS definition revisited

] . ] A STDEVS model has the structure:
Select : 2P — D is a tie—breaking function for simul-

taneous events, that must verifylect(E) € E. Mgt = (X,Y, S, Gints Gewts Pint, Pewt, A, ta)



whereX, Y, S, A\, ta have the same definition as in DEVS.

Gint - S — 29 is a function that assigns a collection
of setsG;,.:(s) C 2° to every states. Given a states, the
collectiong;,,.(s) contains all the subsets Sfthat the next
state might belong to with a known probability, determined
by a functionP;,; : S x 2% — [0,1]. When the system is
in states the probability that the internal transition carries it
to a setG € G(s) is calculated byP;,+ (s, G).

calling  Fin(s) M(Gint(s)) to the mini-
mum sigma-algebra generated Ig¥,:(s), the triplet
(S, Fint(8), Pint(s,-)) is a probability space for each state
s€S.

In a similar wayGe.: : S x 7 x X — 29, is a function
that assigns a collection of sefs,; (s, e, ) C 2° to each
triplet (s, e, z). Given a states and an elapsed time, if
an event with value: arrives,G.,: (s, e, z) contains all the
subsets of that the next state can belong to, with a known
probability calculated byP..; : S x R x X x 25 — [0, 1].

Calling Feut(s,e,2) = M(Gewi(s, e, 7)) to the mini-
mum sigma-algebra generated 8y.. (s, e, z), the triplet
(S, Feat(s,e,x), Peyt(s, e, x,-)) is a probability space for
every triplet(s, e, ).

3. DEVS Models with functions RND

We will show that a DEVS model whose transition func-
tions depend on random variables (typically generatedyusin
RND functions), always define a STDEVS model. Thus,
in first place it will be clear that STDEVS can represent
any practical stochastic DEVS model defined by the usual

method of using RND functions. In second place, this prop-
erty allows us to define and simulate STDEVS models in a

very simple and straight way, getting rid of the need for us-
ing probability spaces.

Theorem 1. A DEVS model Mp
(X,Y, S, 0int, dext, A, ta) in which its state change
functions §;,,; and d.,; depend dynamically on a ran-
dom experiment through a random variable (i.e.,
Oint Oint(s,7) and eyt Oext(s,€,2,7)) With

r € R C R" characterized by a probability measure
P(r € B | B € B C 2%), defines an equivalent STDEVS
model.!

Proof: We shall obtain an STDEVS model/gr
(X7 K 57 gint; gexh Pint7 Pea;t; )\7 ta) eqUivaIent to MD:
assumingthak, Y, S, \, ta are identical folM p andMgr.
Thus, we only need to fin@;.;, Gext, Pint aNd Peyy.

We start defining the collecting sét,.; (s) in relation to
the sigma-algebr#® of the random experiment. For each
setB € B and for each state € S, we define thémage set
Gs,p C S according to:

1we call B to the sigma-algebra where functidhis defined.

$€Gsp < Ir € Bfdins(s,7) =35

Then, we defing,,.+ (s) as:

gint(s) £ {GS,B|B € B}

Therefore, for the system being in statehe probability of
transition to a new state belonging@® g € Gin:(s) is:

Pint(sa GS,B) = P(T S B)

Then, for each state € .S, the functionP;,,;(s, -) is a prob-
ability measure in the measurable sp&&e7;,..(s)), being
Fint(s) = 0(G(s)) the minimum sigma-algebra generated
by Gin:(s). This is demonstrated by verification of the fol-
lowing axioms:

1. Pni(s,Gs, ) > 0 becauseP;,.(s,Gs.p) = P(r €
B) > 0.

2. Pini(s,S) =1, givend;(s,r) € S,Vs,r.

3. LetB;,By; € B. Then, ifGs5, NGsp, = @ =
By N By = @. Therefore, the following holds true:
Pint(S;Gs,Bl @] Gssz) = P(T e BuU BQ) = P(T’ €
B1) + P(r € B2) = Py (s,Gs,B,) + Pint(s,Gs B,)

So far, we obtaine@;,,; andP;,; for the STDEVS model
Mg departing from the DEVS modél/p definition and
the randomness condition incorporatedip (s, r).

In the case ofG.,; and P.,; we proceed analogously,
this time replacing the stateby the triplet(s, e, z) for the
analysis. This concludes the proof.

In the case that one (or both) of the transition functions
is deterministic, it can still be defined &§, ), but in such
a way that it results independent en Hence, the whole
previous analysis remains valid. Following this reason-
ing, the theorem here presented is an alternative way for
demonstrating that deterministic DEVS is a particular case
of stochastic STDEVS, where randomness is removed from
state transition dynamics.

3.1. Particular Case: Random Variable r
with Uniform Distribution

Consider now the particular case= R = [0,1]" C "
with uniform distribution. We say that is uniformly dis-
tributed when every component.ohave uniform distribu-
tion over the intervalo, 1]:

ri ~U(0,1), i=1,2,...,n

This is the typical case emulated pgeudo-random se-
guence generatorgsed in most of the programming lan-
guages (we will call thenR N D). It is interesting to take a



look separately for this particular case given STDEVS mod- where
els will be usually simulated using N D functions.

The following is then, a corollary of Theorem 1, par- Gint (sa-) ?f d=d,
ticularizing STDEVS model properties when usifgv D Gext(5a,€a,7q) if x4 # O,
functions within the transition definitions. {sa} otherwise

Corolary 1. A DEVS model in whichy,; (s, ) dependson  with
n functionsRN D (i.e.,r ~ U(0,1)") defines a STDEVS { Zae a(Aa=(sq=)) i d* € Iy,

equivalent model. otherwise

This corollary does not need a demonstration, given it is 0 ifded ormy 0
a particular case of Theorem 1, takify= [0, 1]™. Any- Eq = { o d ’
way, we can make explicit reference of the components of éq Otherwise
the resulting STDEVS model. and

Proceeding like the general case, for eactage set 4 = eq + tage(sq+) — eq-

Gs,B € G(s), the probability of transitioning from state

to a new state belonging to the €& 5 will be: The setsGn € Ginty (sn) Will have the formGy =

(...(Gg,{eq}),...) and will verify Gy C Sy.
Pint(s,Gs.5) = P(r € B) We also call}'th(sN) £ M(Ginty (sn)) the min-
imum sigma-algebra generated By,:, (sx). Then, the

which turns out to be the Lebesgue Measure for thédset ~ probability measure for the internal transition procesdin
Pinty : Sn x 258 — [0,1] is defined as:
4. Closure Under Coupling in STDEVS
Pinty (SN, GN) £ Pinty. (84, Gar) H Pert, (84, €4, xd, Ga)
We will show that a coupled DEVS modeV = d|za#0
(XN,YN,D,{Md},{ld},{Zi,d},Selecﬂ with My € ) )
{M,} being STDEVS atomic models for afl defines an  andthe triplet§n, Finty (sn), Pinty (v, ) is @ probabil-
equivalent atomic STDEVS model, thus verifying STDEVS ity space.
closure under coupling. Similarly, for external transitions we define the set—
To achieve this, we will find an atomic STDEVS model collecting function:
Msr = (X7KSN;gintN7geth7PintN;Pe:ctN;)\7ta) de- A -
fined by the coupling expressioW. Geaty (SN, €,7N) = ng(gd x {ea})
We begin defining the relationships that are shared with

the classic proof for deterministic DEVS: ere
e X =Xpn,Y =Yy Gy = Gext(8d,€d,2a) If 2q # O,
_ {sa} otherwise
e Sy = dXD{(Sd,ed)} with sq4 € Sg,eq €
S
R. Each component o6y has the formsy = . 0 ifzg+# @,
(.o, (sq,€d),-.2)- ¢ éq oOtherwise
[ ] ta(SN) = min{od | de D}, with o4 = tad(sd) — €q. with
. ZN7d(xN) if N e 1,
o d* = Select(IMM(sn)) = {@ otherwise
Zd*,N(Ad* (Sd*>> if d* € IN, and
L4 )\SN - . 5 —
%) otherwise €d =¢€dte

Th {5 inta ill also have the fornGy =
Then, we need to obtain the probability spaces thatwill( e(se {é\;S Gi targZNv\)nl\IN\l/eﬁf)S/OGNavceSNe oty

represent the stochastic dynamics of the coupled model, as
a result of the stochastic behavior of its atomic components

First, for internal transitions, we define the set—collegti
function:

Again, we define  Fouy(sn,e,xn) £

M(Gexin (sn,e,2n)) the minimum  sigma-algebra
generated byG...,(sn,e,zn). Then, the probabil-
n _ ity measure for the external transition process /i
Gintn (SN) = ng(gd x {ea}) Pesty - Sy X R x X x 298 — [0, 1] is defined as:



L4 Pint(sa G) = Pint(57At) =1- e—at y G e gint

Porty(sn,e,on,GN) = H Peyt, (34,64, 2d, Ga) As we can see the stochastic description for the inter de-
dlza#0 parture time of tasks is mapped directly to the functi®n
through the corresponding cumulative distribution fuoiati
and the triple §, Fexty (SN, €, 2N), Pexty (SN, €, 2N, 7)) Because only internal transitions are possible, we don’t
is a probability space. need to defin€..¢, P.s.
Nevertheless, for implementing this STDEVS model
5. Example Model MLS in a simulator, the probabilistic description must be

translated into an algorithm to be evaluated into the iratiern
transition code, representing the associated DEBY,S )

We will give a simple example for a system which dy- ! . : >N !
function. According our previous definitions we define:

namics fully depend on random experiments. Using the
theory presented we will see that the practical DEVS repre-

sentations of the random processes are consistent with thei dint(s,7) = —(1/a)log(r)
STDEVS specification in terms of probability spaces. where by means of the inverse transformation method we
The exampleLoad Balancing Mode(LBM) is a sim-  gptained an exponential distributed function making use of

plification of a computing system that processes successivey yniform distributed variable ~ U(0, 1) available as a
Tasks, consisting on the atomic modelsad Generator  RND() function in most languages.

(LG), Weighted Balance(WB) and two Servers(S1,52) Finally, the equivalent DEVS specification for LG will
with no queuing policy (i.e., the Tasks arriving at a busy pe:
server are discarded). The §a¥/B,S1,S2 form the sub- MECG = (XY, S, ints 6eat, \, ta)

systemCluster(CL), a coupled model.
As we did before, transition functions will be expressed Where:

in terms ofr ~ U(0,1), namelydin:(-) = ine(s,r) and X=0
Seat(:) = deat(s,€,2,7). Y = {(tasky,outy)}
S =R

5.1 Load Generator

Consider a system that generates a number of Tasks in cat(s, €, 2,7) = 5
the unit time following a discrete Poisson random distribu- Als) = {(tasky, out1)}
tion beingd,. the mean expected departure ratd can be ta(s) =s
proven that the inter-departure tirag between tasks and

k + 1 is exponentially distributed accordifg(ox < 1) = geparture time is stored in the real valued statehich is

—at _ i
l—e™ wherea = d, andl/a is the mean expected value. a1 sed by the time advance functigns) = s to "sleep”
We will assume that LG generates only one type of task | during the corresponding amount of time.

(Task: task:) which goes out through the only output port  gjinjjar reasoning can be applied for the rest of the com-

(Port: out,). LG does not have any inputs, thus only inter- o nts where the state values are used for storage pur-
pal transitions are possible. The STDEVS definition for LG poses and models are specified in a shorter way.

IS:

In this component, the next randomly calculated inter-

5.2 Weighted Balancer
M.é/TCf = (Xv Yv Sa gint; geztv Pintv Pemt; >‘7 t(l)
The WB component delivers the incoming tasks arriving
where the deterministic components are: at input portin, to the output porteut; andouts based
on a balancing factdr; € [0, 1] that determines the weight

* X =0,Y = {(task, out)} relation between both ports. FéF = 0.5 both outputs

o S=R have the same weight and therefore the outgoing load will
be balanced equiprobably. Fy > 0.5 out; is privileged
o \; = {(taski,outy)} and forb; < 0.5 outs is privileged, in a linear fashion. The
B tasks accepted belong to a $e& {task, ..., task,, } with
o ta(s) =s m different possible tasks.
and the probabilistic-related elements are: We will give the DEVS definition\/};® for WB:
L4 gint = {At | t> 0} ’ At = [O7t) MX)VB = (X7KS7 5inta(sext7)\;ta)



The corresponding equivalent STDEVS modél,?
can be obtained following the same reasoning previously
used for component LG. From now on, we will make use of
Theorem 1 and will refer only to the DEVS form of com-
ponents with some form of stochastic behavior, containing
RND() functions in the algorithms that evaluate transision
Then we have:

o X =T x{inp1},Y =T x {outy, outs}
o S =T x {outy,outs} x R

e MNw,p,0) = (w,p)

o t,(w,p,o)=0

The state is a triplet = (w,p,o), wherew repre-
sents the last task received,is the port where that task
is delivered andr is the time advance. For our example
T = {task:}. After receiving an eventz,,z,) the new
state must be evaluated by:

581t((vaa U)v 6, (xva :Cp)v T) = (xvaﬁv 0)

with
. Jouty ifr <by,
P= outy otherwise

Finally, the internal transition will be:

6int((w;p7 U)a T) = (’w,p, OO)

in this case, independent of

5.3 Serverl and Server2

The servers S1 and S2 are components that receive thé 12

tasks delivered by the balancer WB. For each task received
a server processes it demanding a service tiyrand sends
it out to a sink, where it is recognized as a processed task
The variables; is distributed exponentially wittP(s; <
t) = 1 — e, and its mean expected valuelig.

There is no queuing policy nor preemption defined for

o t.(w,busy,o) =0c

The state is a triplet = (w, busy, o), wherew repre-
sents the last task receivéd,sy represent the status of the
server (ifbusy = 1 the server is processing a task and if
busy = 0 the server is free) andl is the time advance. For
our example, we havE = {task; } and only one input port
and one output port. After receiving an evéni, ;) the
new state will be evaluated according:

Oeat(w, busy, o), e, (x4, xp),r) = (W0, 1,5)

{w

with » ~ U(0, 1). And the internal transition will be:

with

= —(1/b)log(r) if busy =0,

Ty, O
w,06=0—e if busy = 1.

£
I

Oint((w, busy, o), r) = (w, 0, 00)

independent of.

5.4 The Complete Model

]
>
kS

1
S |

. Figure 1. Topology of the Load Balancer
Model (LBM) example.

the servers. So, if a new task arrives to a server when itis The system is intended to show a scenario where ran-

busy processing a previous task, the arriving task is ighore
We will give the DEVS definitionM 5" with n = 1,2
for S1 and S2 respectively:

M = (X,Y, S, 8int, Ocxt, A, ta)
where:
o X =T x{inp1},Y =T x {out;}
e S=Tx{0,1} x Ry

o \w,busy,o) = (w)

dom variables affect all of its building components. Here,
we have a Poisson process dominating task generation, a
Uniform process (with a latter deterministic bias) affagti

the balancing between two servers and a Negative Expo-
nential process representing task servicing times at serve
Nevertheless, the implementation always rely on the use of
a uniform distributed variable ~ U (0, 1).

In Figure 1 the model topology is represented along with
the main model parameters and derived traffic magnitudes
that will be used in the Simulations section.

With the DEVS specification of these components and
their defined interconnections, we built the same system in



two different DEVS Simulation Tools (PowerDEVS [11]
and CD++ [14]) parameterizing them with identical values,
and run several simulations at different operating poiots f
comparison and validation purposes.

5.5. Simulation Results

In order to validate results, we describe the given ex-

Now, with (1) and (4) in (2) we derive the internal loss
probabilities:

bfd:rStl
1+ bfdrsﬂ

(1 — bf)d,,~8t2

Ples, =
tossy 1+ (1= bf)dyse

y Llossy —

(5)

Finally, we want to express thetal system throughpuh
terms of aotal system loss probabilit§,,ss like we did for
the individual servers. So with (3) and (5) we obtain:

ample model by means of basic queuing theory, derive the

equations describing the system, and then compare simula-

tion results against the expected theoretical values.

A single server with no queuing capacity can be de-
scribed by aM /M /m/m system withm = 1 [9]. This
description assumes exponential inter-arrival times and e
ponential service times which match our case. For tthe i
server we have the parametarqarrival rate) andy; (ser-
vice rate) Thetraffic intensityis defined

1)

Because of the limited buffering capacity (in our simplest
case, only the servicing task can be "buffered”) there is a
probability of losing tasks, which will never be serviced.
This probability is denoted;,ss, (probability of los3 and

is related with the traffic intensity bigrlang’s loss formula

[9] in its simplest form for a single server:

pi = Ni/ ki

Plossq, = pi/(l + pi) (2)

The ith server will see at its input port affective arrival
rate:

)‘; = )‘i(l - Plossq,) (3

which under stability conditiosis equal to theserver
throughpufat its output port. In our LBM example, we have
1 = 1,2 for the two servers in the cluster (CL) sub-model.
Clearly, thetotal system throughpf mustbe\” = ;4\,
hence being a function of thetal system arrival rate\ and
the traffic intensitiew, po at the servers.

These magnitudes are all calculated from model parame-

ters set up for simulationi,. (mean departure rate at LG, in
Tasks/secondb (balancing factor at WB)s,1, s:2 (Mmean
service time at S1 and S2 respectivelysgcondsin the
following way:

A =d,
H1 = ]-/Stl )\1 = bf)\ (4)
H2 = ]./Stg )\2 = (]. — bf))\

2In lossy systems, theffective traffic intensit)o; = /\; /i is always
p; < 1 so the typical stability condition\; /p; < 1 is not required. Fi-
nite buffer systems are always stable since arriving task#oat when the
number of tasks in the system exceeds system capacity.

Ploss = bfljlossl + (1 - bf)ljlossg

>\/ = >\(1 - -Ploss) (6)

Effective Output Rate

o
o
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Figure 2. Simulation Results. Test Scenario 1
d,,A = 10, bf = [0, 1], St1 = 027 St2 = 0.2

With equations (6) we completely characterize the sys-
tem in terms of offered load, loss probabilities and effexti
throughput. Then, in Figure 2 we plot the theoretical curves
for Pioss, Plossy s Plosss and )\ as functions oby in atest
scenario 1chosen ag’S; = {d, = 10,by = [0,1], 541 =

0.2, sz2 = 0.2}. In the same figure we plotted simulation re-
sults for the STDEVS model LBM parameterized according
the scenarid’'S,, at a set of illustrative operational points
sweeping ;s between 0 and 1.

It can be observed that simulation results match closely
the expected theoretical curves, for successive repetitio
each point.

Simulation point values were derived from the output
event log files produced by simulation runs, using calcu-



latec? task ratevariables, thus obtaininy ™ andPgim =

loss;

1 — (A" /\$m), The statistical properties of the random

variables produced by the atomic models were verified to

match with those expected: uniform distribution gr dis-
crete Poisson distribution forand exponential distribution

for s;; ands,. This also produced Poisson distributed se-

ries of values for all the observed task rates, as expected.

6. Conclusions

We presented a novel formalism for describing stochas-

[7]

(8]

(9]

tic discrete event systems. Based on the system theoretical

approach of DEVS and making use of Probability Spaces,

STDEVS provides a formal framework for modeling and [10]

simulation of generalized non deterministic discrete eéven

systems.

The development of STDEVS was motivated by a wider

project aimed to provide a unified framework for model-

ing and simulation of automated control techniques target-
ing the performance optimization of computer systems and
data networks; in interaction with continuous and hybrid

systems.

Thus, next steps will be oriented to develop STDEVS—

[11]

based libraries in PowerDEVS and CD++ for modeling and [12]
simulation of general computer systems and data networks.

References

(1]

(2]

(3]

(4]

[5] J.B. Filippi, M. Delhom, and F. Bernardi.

(6]

S. Aggarwal. Ergodic Machines - Probabilistic and
Approximate Homomorphic Simplificatiari®hD the-
sis, The University of Michigan, Ann Arbor, Michi-
gan, 1975.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis.Modelling with Generalized
Stochastic Petri Netslohn Wiley & Sons, 1995.

Christos Cassandradiscrete Event Systems: Mod-
eling and Performance Analysislrwin and Aksen,
Boston, Massachusetts, 1993.

F.E. Cellier and E. KofmanContinuous System Simu-
lation. Springer, New York, 2006.

The
JDEVS Environmental Modeling and Simulation En-
vironment. InProceedings of IEMSS 2002blume 3,
pages 283-288, 2002.

Norbert Giambiasi, Bruno Escude, and Sumit Ghosh.

GDEVS: A generalized Discrete Event specification

3A general kzim task rate at an arbitrary observation placeis:
)xzim = NumberO fTasksLoggedy, /Total SimulationTime.

[13]

[14]

[15]

[16]

[17]

[18]

for accurate modeling of dynamic systemBansac-
tions of SCS17(3):120-134, 2000.

R. Gray and L. DavissonAn Introduction to Statis-
tical Signal ProcessingCambridge University Press,
Cambridge, UK, 2004.

C. Joslyn. The Process Theoretical Approach to Qual-
itative DEVS. InProc. 7th Conf. on Al, Simulation,
and Planning in High Autonomy Systems (AIS ;96)
pages 235-242, San Diego, California, 1996.

Leonard Kleinrock.Queuing Systems, Vol.1: Theory
Wiley & Sons, New York, NY, USA, 1975.

E. Kofman and R.D. Castro. STDEVS, A Novel For-
malism for Modeling and Simulation of Stochastic
Discrete Event Systems. Proceedings of AADECA
2006 Buenos Aires, Argentina, 2006.

E. Kofman, M. Lapadula, and E. Pagliero. Pow-
erDEVS:A DEVS Based Environment for Hybrid
System Modeling and Simulation. Technical Re-
port LSD0306, LSD, UNR, 2003. Available at
www.fceia.unr.edu.ar/kofman.

B. Melamed. Analysis and Simplifications of Dis-
crete Event Systems and Jackson Queuing Networks.
PhD thesis, The University of Michigan,, Ann Arbor,
Michigan, 1976.

James NutardParallel Discrete Event Simulation with
Application to Continuous SystemPBhD thesis, The
University of Arizona, 2003.

G. Wainer, G. Christen, and A. Dobniewski. Defining
DEVS Models with the CD++ Toolkit. IfProceedings
of ESS200pages 633637, 2001.

B. Zeigler. Theory of Modeling and Simulatiodohn
Wiley & Sons, New York, 1976.

B. Zeigler, T.G. Kim, and H. PraehoferTheory of
Modeling and Simulation. Second editioAcademic
Press, New York, 2000.

B. Zeigler and S. Vahie. Devs formalism and method-
ology: unity of conception/diversity of application.
In Proceedings of the 25th Winter Simulation Confer-
ence pages 573-579, Los Angeles, CA, 1993.

Bernard Zeigler and Hessam Sarjoughidntroduc-
tion to DEVS Modeling and Simulation with JAVA:
A Simplified Approach to HLA-Compliant Distributed
Simulations Arizona Center for Integrative Modeling
and Simulation, 2000.



