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Abstract

We introduce an extension of the classic Discrete
Event System Specification (DEVS) formalism that includes
stochastic features. Based on the use of Probability Spaces,
the STochastic DEVS specification (STDEVS) provides a
formal framework for modeling and simulation of general
non deterministic discrete event systems. The main theoret-
ical properties of STDEVS are shown. We illustrate the use
of STDEVS in a simulation example that shows the potential
of the new formalism to deal with problems of performance
analysis in computer systems and data networks.
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1. Introduction

The DEVS formalism was developed by Bernard Zeigler
in the mid–seventies [15, 16]. Being a general system theo-
retic based formalism, DEVS can represent all the systems
whose input/output behavior can be described by sequences
of events. Thus, discrete event systems modeled by Finite
State Automatas, Petri Nets, Grafcets, Statecharts, etc.,can
be also represented by DEVS models [17]. Moreover, dis-
crete time systems can be also represented by DEVS [16].

The generality of DEVS converted it into a widely used
language to describe and to simulate most classes of discrete
systems. Moreover, numerical integration methods that ap-
proximate continuous systems (differential equations) by
DEVS models have been developped [4] and several aplica-
tions and extensions of the DEVS formalism for modeling
and simulation of continuous and hybrid systems have been
proposed [6, 13]. Consequently, many DEVS–based mod-
eling and simulation software tools have been developed in
recent years [18, 14, 5, 11].

Nevertheless, a drawback of DEVS is that it is only for-
mally defined for deterministic systems which limits the
stochastic treatment of the systems under study. Although
the relationship between DEVS and stochastic systems was

studied in some early works [1, 12], and an extension for
stochastic DEVS with finite states was already proposed [8],
there is not a general theory nor a formal theoretic support
for modeling general stochastic DEVS models.

Stochastic models play a fundamental role in discrete
event system theory. In fact, any system involving uncer-
tainties, unpredictable human actions or system failures re-
quires a non–deterministic treatment. Examples of stochas-
tic discrete event formalisms are Markov Chains, Queuing
Networks [3] and Stochastic Petri Nets [2]. These tools per-
mit analyizing and simulating stochastic models in several
applications.

The first attempt to define a general DEVS–based for-
malism for stochastic system was reported in [10]. In this
paper, we continue with the preliminary work of [10] re-
defining the first idea of STDEVS proposed there, and de-
velopping a complete theory of stochastic DEVS.

The work is organized as follows. After recalling the
principles of DEVS and Probability Spaces, Section 2 re-
defines the STDEVS formalism. Then, Section 3 shows
that any DEVS model where the transition functions depend
on random variables defines an equivalent STDEVS model.
This property permits modeling STDEVS models without
making use of probability space theory and also provides a
formal framework for conventional DEVS simulation tools
that make use of pseudo random sequence generators. Sec-
tion 4 shows that STDEVS is closed under coupling, and,
finally, Section 5 illustrates the use of the new formalism
with a simulation example.

1.1. DEVS Formalism

A DEVS model [16] processes an input event trajec-
tory and –according to that trajectory and to its own initial
conditions– provokes an output event trajectory. Formally,
a DEVSatomicmodel is defined by the following structure:

M = (X, Y, S, δint, δext, λ, ta),

where

• X is the set of input event values, i.e., the set of all the
values that an input event can take;
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• Y is the set of output event values;

• S is the set of state values;

• δint, δext, λ andta are functions which define the sys-
tem dynamics.

Each possible states (s ∈ S) has an associatedtime ad-
vancecalculated by thetime advance functionta(s) (ta(s) :
S → ℜ+

0 ). Thetime advanceis a nonnegative real number
saying how long the system remains in a given state in ab-
sence of input events.

Thus, if the state adopts the values1 at time t1, after
ta(s1) units of time (i.e., at timeta(s1) + t1) the system
performs aninternal transition, going to a new states2. The
new state is calculated ass2 = δint(s1), whereδint (δint :
S → S) is calledinternal transition function.

When the state goes froms1 to s2 an output event is
produced with valuey1 = λ(s1), whereλ (λ : S → Y ) is
calledoutput function. Functionsta, δint, andλ define the
autonomous behavior of a DEVS model.

When an input event arrives, the state changes instan-
taneously. The new state value depends not only on the
input event value but also on the previous state value and
the elapsed time since the last transition. If the system goes
to the states3 at timet3 and then an input event arrives at
time t3 + e with valuex1, the new state is calculated as
s4 = δext(s3, e, x1) (note thatta(s3) > e). In this case, we
say that the system performs anexternal transition. Func-
tion δext (δext : S × ℜ+

0 × X → S) is called theexternal
transition function. No output event is produced during an
external transition.

DEVS models can be coupled in a modular way [16]. A
DEVS coupled modelN is defined by the structure:

N = (XN , YN , D, {Md}, {Id}, {Zi,d}, Select)

where:

• XN andYN are the sets of input and output values of
the coupled model.

• D is the set of component references, so that for each
d ∈ D, Md is a DEVS model.

• For eachd ∈ D ∪ {N}, Id ⊂ (D ∪ {N})− {d} is the
set of influencer models on subsystemd.

• For eachi ∈ Id, Zi,d is the translation function, where

Zi,d :











XN → Xd if i = N

Yi → YN if d = N

Yi → Xd otherwise

• Select : 2D → D is a tie–breaking function for simul-
taneous events, that must verifySelect(E) ∈ E.

DEVS models are closed under coupling, i.e., the cou-
pling of DEVS models defines an equivalent atomic DEVS
model.

1.2. Probability Spaces

We recall here some concepts of probability spaces [7].
A sample spaceS of a random experiment is a set that

includes all the possible outcomes of the experiment.
An event space (also referred assigma–fieldor sigma–

algebra) F of the sample spaceS is a nonempty collection
made of subsets ofS.

A sigma–field cannot be any arbitrary collection of sub-
sets ofS. A collectionF must satisfy the following proper-
ties in order to constitute a sigma–field:

• if F ∈ F thenF c ∈ F (whereF c is the complement
of F in S).

• if Fi ∈ F for i = 1, . . . ,∞, then also
⋃∞

i=1
Fi ∈ F

Notice that sinceF c∪F = S, the last two conditions imply
thatS ∈ F and alsoφ ∈ F .

A particular sigma–field overS is the collection of all
the subsets ofS (2S, called the power set ofS).

Let G be a particular collection of subsets ofS. The
sigma–field generated byG, denotedM(G), is the smallest
sigma–field that contains all the elements ofG.

A pair (S,F ) consisting on a sample spaceS and a sigma
fieldF of subsets ofS is called a measurable space.

A probability measureP on a measurable space (S,F )
is an assignment of a real numberP (F ) to every member
F of the sigma-field, such thatP obeys the following rules,

• Axiom 1. P (F ) ≥ 0 for all F ∈ F .

• Axiom 2. P (S) = 1.

• Axiom 3. If Fi ∈ F , i = 1, . . . ,∞ are disjoint sets,
thenP (

⋃∞
i=1

Fi) =
∑∞

i=1
P (Fi)

WhenF = M(G) (the sigma field is generated from a col-
lection G), the knowledge ofP (G) with G ∈ G defines
functionP for everyF ∈ F .

Finally, a probability space is defined as a triple
(S,F , P ) consisting of a sample spaceS, a sigma–fieldF
of subsets ofS, and a probability measureP defined for all
members ofF . Synthesizing, for everyF ∈ F , P (F ) ex-
presses the probability that the experiment produces a sam-
ples ∈ F ⊆ S.

2. STDEVS definition revisited

A STDEVS model has the structure:

MST = (X, Y, S,Gint,Gext, Pint, Pext, λ, ta)
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whereX, Y, S, λ, ta have the same definition as in DEVS.
Gint : S → 2S is a function that assigns a collection

of setsGint(s) ⊆ 2S to every states. Given a states, the
collectionGint(s) contains all the subsets ofS that the next
state might belong to with a known probability, determined
by a functionPint : S × 2S → [0, 1]. When the system is
in states the probability that the internal transition carries it
to a setG ∈ G(s) is calculated byPint(s, G).

Calling Fint(s) , M(Gint(s)) to the mini-
mum sigma-algebra generated byGint(s), the triplet
(S,Fint(s), Pint(s, ·)) is a probability space for each state
s ∈ S.

In a similar way,Gext : S×ℜ+

0 ×X → 2S , is a function
that assigns a collection of setsGext(s, e, x) ⊆ 2S to each
triplet (s, e, x). Given a states and an elapsed timee, if
an event with valuex arrives,Gext(s, e, x) contains all the
subsets ofS that the next state can belong to, with a known
probability calculated byPext : S×ℜ+

0 ×X×2S → [0, 1].
Calling Fext(s, e, x) , M(Gext(s, e, x)) to the mini-

mum sigma-algebra generated byGext(s, e, x), the triplet
(S,Fext(s, e, x), Pext(s, e, x, ·)) is a probability space for
every triplet(s, e, x).

3. DEVS Models with functions RND

We will show that a DEVS model whose transition func-
tions depend on random variables (typically generated using
RND functions), always define a STDEVS model. Thus,
in first place it will be clear that STDEVS can represent
anypractical stochastic DEVS model defined by the usual
method of using RND functions. In second place, this prop-
erty allows us to define and simulate STDEVS models in a
very simple and straight way, getting rid of the need for us-
ing probability spaces.

Theorem 1. A DEVS model MD =
(X, Y, S, δint, δext, λ, ta) in which its state change
functions δint and δext depend dynamically on a ran-
dom experiment through a random variabler (i.e.,
δint = δint(s, r) and δext = δext(s, e, x, r)) with
r ∈ R ⊆ ℜn characterized by a probability measure
P (r ∈ B | B ∈ B ⊆ 2R), defines an equivalent STDEVS
model.1

Proof: We shall obtain an STDEVS modelMST =
(X, Y, S,Gint,Gext, Pint, Pext, λ, ta) equivalent to MD,
assuming thatX, Y, S, λ, ta are identical forMD andMST .
Thus, we only need to findGint,Gext, Pint andPext.

We start defining the collecting setGint(s) in relation to
the sigma-algebraB of the random experiment. For each
setB ∈ B and for each states ∈ S, we define theimage set
Gs,B ⊆ S according to:

1We callB to the sigma-algebra where functionP is defined.

ŝ ∈ Gs,B ⇐⇒ ∃r ∈ B/δint(s, r) = ŝ

Then, we defineGint(s) as:

Gint(s) , {Gs,B|B ∈ B}

Therefore, for the system being in states, the probability of
transition to a new state belonging toGs,B ∈ Gint(s) is:

Pint(s, Gs,B) = P (r ∈ B)

Then, for each states ∈ S, the functionPint(s, ·) is a prob-
ability measure in the measurable space(S,Fint(s)), being
Fint(s) = σ(G(s)) the minimum sigma-algebra generated
by Gint(s). This is demonstrated by verification of the fol-
lowing axioms:

1. Pint(s, Gs,B) ≥ 0 becausePint(s, Gs,B) = P (r ∈
B) ≥ 0.

2. Pint(s, S) = 1 , givenδint(s, r) ∈ S, ∀s, r.

3. Let B1, B2 ∈ B. Then, if Gs,B1
∩ Gs,B2

= ⊘ ⇒
B1 ∩ B2 = ⊘. Therefore, the following holds true:
Pint(s, Gs,B1

∪ Gs,B2
) = P (r ∈ B1 ∪ B2) = P (r ∈

B1) + P (r ∈ B2) = Pint(s, Gs,B1
) + Pint(s, Gs,B1

)

So far, we obtainedGint andPint for the STDEVS model
MST departing from the DEVS modelMD definition and
the randomness condition incorporated inδint(s, r).

In the case ofGext and Pext we proceed analogously,
this time replacing the states by the triplet(s, e, x) for the
analysis. This concludes the proof.

In the case that one (or both) of the transition functions
is deterministic, it can still be defined asδ(·, r), but in such
a way that it results independent onr. Hence, the whole
previous analysis remains valid. Following this reason-
ing, the theorem here presented is an alternative way for
demonstrating that deterministic DEVS is a particular case
of stochastic STDEVS, where randomness is removed from
state transition dynamics.

3.1. Particular Case: Random Variable r
with Uniform Distribution

Consider now the particular caser ∈ R = [0, 1]n ⊂ ℜn

with uniform distribution. We say thatr is uniformly dis-
tributed when every component ofr have uniform distribu-
tion over the interval[0, 1]:

ri ∼ U(0, 1), i = 1, 2, . . . , n

This is the typical case emulated bypseudo-random se-
quence generatorsused in most of the programming lan-
guages (we will call themRND). It is interesting to take a
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look separately for this particular case given STDEVS mod-
els will be usually simulated usingRND functions.

The following is then, a corollary of Theorem 1, par-
ticularizing STDEVS model properties when usingRND
functions within the transition definitions.

Corolary 1. A DEVS model in whichδint(s, r) depends on
n functionsRND (i.e., r ∼ U(0, 1)n) defines a STDEVS
equivalent model.

This corollary does not need a demonstration, given it is
a particular case of Theorem 1, takingR = [0, 1]n. Any-
way, we can make explicit reference of the components of
the resulting STDEVS model.

Proceeding like the general case, for eachimage set
Gs,B ∈ G(s), the probability of transitioning from states
to a new state belonging to the setGs,B will be:

Pint(s, Gs,B) = P (r ∈ B)

which turns out to be the Lebesgue Measure for the setB.

4. Closure Under Coupling in STDEVS

We will show that a coupled DEVS modelN =
〈XN , YN , D, {Md}, {Id}, {Zi,d}, Select〉 with Md ∈
{Md} being STDEVS atomic models for alld, defines an
equivalent atomic STDEVS model, thus verifying STDEVS
closure under coupling.

To achieve this, we will find an atomic STDEVS model
MST = (X, Y, SN ,GintN

,GextN
, PintN

, PextN
, λ, ta) de-

fined by the coupling expressionN .
We begin defining the relationships that are shared with

the classic proof for deterministic DEVS:

• X = XN , Y = YN

• SN = ×
d∈D

{(sd, ed)} with sd ∈ Sd, ed ∈

ℜ. Each component ofSN has the formsN =
(. . . , (sd, ed), . . .).

• ta(sN ) = min{σd | d ∈ D}, with σd = tad
(sd) − ed.

• d∗ = Select(IMM(sN))

• λsN
=

{

Zd∗,N (λd∗(sd∗)) if d∗ ∈ IN ,

⊘ otherwise.

Then, we need to obtain the probability spaces that will
represent the stochastic dynamics of the coupled model, as
a result of the stochastic behavior of its atomic components.

First, for internal transitions, we define the set–collecting
function:

GintN
(sN ) , ×

d∈D
(Gd × {ẽd})

where

Gd =











Gint(sd∗) if d = d∗,

Gext(sd, êd, xd) if xd 6= ⊘,

{sd} otherwise.

with

xd =

{

Zd∗,d(λd∗(sd∗)) if d∗ ∈ Id,

⊘ otherwise.

ẽd =

{

0 if d = d∗ or xd 6= ⊘,

êd otherwise.

and
êd = ed + tad∗(sd∗) − ed∗

The setsGN ∈ GintN
(sN ) will have the formGN =

(. . . (Gd, {ed}), . . .) and will verify GN ⊆ SN .
We also callFintN

(sN ) , M(GintN
(sN )) the min-

imum sigma-algebra generated byGintN
(sN ). Then, the

probability measure for the internal transition process inN ,
PintN

: SN × 2SN → [0, 1] is defined as:

PintN
(sN , GN ) , Pintd∗

(sd∗ , Gd∗)
∏

d|xd 6=⊘

Pextd
(sd, êd, xd, Gd)

and the triplet (SN ,FintN
(sN ), PintN

(sN , ·)) is a probabil-
ity space.

Similarly, for external transitions we define the set–
collecting function:

GextN
(sN , e, xN ) , ×

d∈D
(Gd × {ẽd})

where

Gd =

{

Gext(sd, êd, xd) if xd 6= ⊘,

{sd} otherwise.

ẽd =

{

0 if xd 6= ⊘,

êd otherwise.

with

xd =

{

ZN,d(xN ) if N ∈ Id,

⊘ otherwise.

and
êd = ed + e

The setsGN ∈ GintN
(sN ) will also have the formGN =

(. . . (Gd, {ed}), . . .) and will verify GN ⊆ SN .
Again, we define FextN

(sN , e, xN ) ,

M(GextN
(sN , e, xN )) the minimum sigma-algebra

generated byGextN
(sN , e, xN ). Then, the probabil-

ity measure for the external transition process inN ,
PextN

: SN ×ℜ × X × 2SN → [0, 1] is defined as:
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PextN
(sN , e, xN , GN ) =

∏

d|xd 6=⊘

Pextd
(sd, êd, xd, Gd)

and the triple (SN ,FextN
(sN , e, xN ), PextN

(sN , e, xN , ·))
is a probability space.

5. Example Model

We will give a simple example for a system which dy-
namics fully depend on random experiments. Using the
theory presented we will see that the practical DEVS repre-
sentations of the random processes are consistent with their
STDEVS specification in terms of probability spaces.

The exampleLoad Balancing Model(LBM) is a sim-
plification of a computing system that processes successive
Tasks, consisting on the atomic models:Load Generator
(LG), Weighted Balancer(WB) and twoServers(S1,S2)
with no queuing policy (i.e., the Tasks arriving at a busy
server are discarded). The set{WB,S1,S2} form the sub-
systemCluster(CL), a coupled model.

As we did before, transition functions will be expressed
in terms ofr ∼ U(0, 1), namelyδint(·) = δint(s, r) and
δext(·) = δext(s, e, x, r).

5.1 Load Generator

Consider a system that generates a number of Tasks in
the unit time following a discrete Poisson random distribu-
tion beingdr the mean expected departure rate. It can be
proven that the inter-departure timeσk between tasksk and
k + 1 is exponentially distributed accordingP (σk ≤ t) =
1− e−at wherea = dr and1/a is the mean expected value.
We will assume that LG generates only one type of task
(Task: task1) which goes out through the only output port
(Port: out1). LG does not have any inputs, thus only inter-
nal transitions are possible. The STDEVS definition for LG
is:

MLG
ST = (X, Y, S,Gint,Gext, Pint, Pext, λ, ta)

where the deterministic components are:

• X = ⊘, Y = {(task1, out1)}

• S = ℜ+
0

• λs = {(task1, out1)}

• ta(s) = s

and the probabilistic-related elements are:

• Gint = {At | t ≥ 0} , At = [0, t)

• Pint(s, G) = Pint(s, At) = 1 − e−at , G ∈ Gint

As we can see the stochastic description for the inter de-
parture time of tasks is mapped directly to the functionPint

through the corresponding cumulative distribution function.
Because only internal transitions are possible, we don´t
need to defineGext, Pext.

Nevertheless, for implementing this STDEVS model
MLG

ST in a simulator, the probabilistic description must be
translated into an algorithm to be evaluated into the internal
transition code, representing the associated DEVSδint(·)
function. According our previous definitions we define:

δint(s, r) = −(1/a)log(r)

where by means of the inverse transformation method we
obtained an exponential distributed function making use of
a uniform distributed variabler ∼ U(0, 1) available as a
RND() function in most languages.

Finally, the equivalent DEVS specification for LG will
be:

MLG
D = (X, Y, S, δint, δext, λ, ta)

where:














































X = ⊘

Y = {(task1, out1)}

S = ℜ+

0

δint(s, r) = −(1/a)log(r)

δext(s, e, x, r) = s

λ(s) = {(task1, out1)}

ta(s) = s

In this component, the next randomly calculated inter-
departure time is stored in the real valued states, which is
then used by the time advance functionta(s) = s to ”sleep”
LG during the corresponding amount of time.

Similar reasoning can be applied for the rest of the com-
ponents, where the state values are used for storage pur-
poses and models are specified in a shorter way.

5.2 Weighted Balancer

The WB component delivers the incoming tasks arriving
at input portin1 to the output portsout1 andout2 based
on a balancing factorbf ∈ [0, 1] that determines the weight
relation between both ports. Forbf = 0.5 both outputs
have the same weight and therefore the outgoing load will
be balanced equiprobably. Forbf > 0.5 out1 is privileged
and forbf < 0.5 out2 is privileged, in a linear fashion. The
tasks accepted belong to a setT = {task1, ..., taskm} with
m different possible tasks.

We will give the DEVS definitionMWB
D for WB:

MWB
D = (X, Y, S, δint, δext, λ, ta)
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The corresponding equivalent STDEVS modelMWB
ST

can be obtained following the same reasoning previously
used for component LG. From now on, we will make use of
Theorem 1 and will refer only to the DEVS form of com-
ponents with some form of stochastic behavior, containing
RND() functions in the algorithms that evaluate transitions.

Then we have:

• X = T × {inp1} , Y = T × {out1, out2}

• S = T × {out1, out2} × ℜ+
0

• λ(w, p, σ) = (w, p)

• ta(w, p, σ) = σ

The state is a triplets = (w, p, σ), wherew repre-
sents the last task received,p is the port where that task
is delivered andσ is the time advance. For our example
T = {task1}. After receiving an event(xv, xp) the new
state must be evaluated by:

δext((w, p, σ), e, (xv , xp), r) = (xv, p̃, 0)

with

p̃ =

{

out1 if r < bf ,

out2 otherwise.

Finally, the internal transition will be:

δint((w, p, σ), r) = (w, p,∞)

in this case, independent ofr.

5.3 Server1 and Server2

The servers S1 and S2 are components that receive the
tasks delivered by the balancer WB. For each task received,
a server processes it demanding a service timest and sends
it out to a sink, where it is recognized as a processed task.
The variablest is distributed exponentially withP (st ≤
t) = 1 − e−bt, and its mean expected value is1/b.

There is no queuing policy nor preemption defined for
the servers. So, if a new task arrives to a server when it is
busy processing a previous task, the arriving task is ignored.

We will give the DEVS definitionMSn

D with n = 1, 2
for S1 and S2 respectively:

MSn

D = (X, Y, S, δint, δext, λ, ta)

where:

• X = T × {inp1} , Y = T × {out1}

• S = T × {0, 1} × ℜ+

0

• λ(w, busy, σ) = (w)

• ta(w, busy, σ) = σ

The state is a triplets = (w, busy, σ), wherew repre-
sents the last task received,busy represent the status of the
server (ifbusy = 1 the server is processing a task and if
busy = 0 the server is free) andσ is the time advance. For
our example, we haveT = {task1} and only one input port
and one output port. After receiving an event(xv, xp) the
new state will be evaluated according:

δext((w, busy, σ), e, (xv , xp), r) = (w̃, 1, σ̃)

with
{

w̃ = xv, σ̃ = −(1/b)log(r) if busy = 0,

w̃ = w, σ̃ = σ − e if busy = 1.

with r ∼ U(0, 1). And the internal transition will be:

δint((w, busy, σ), r) = (w, 0,∞)

independent ofr.

5.4 The Complete Model

LG WB

S1

S2

LBM

CL

λ
dr bf

st1

st2

λ1

λ2
λ

′

2

λ
′

1

λ
′

= λ
′

1 + λ
′

2

µ1

µ2

Figure 1. Topology of the Load Balancer
Model (LBM) example.

The system is intended to show a scenario where ran-
dom variables affect all of its building components. Here,
we have a Poisson process dominating task generation, a
Uniform process (with a latter deterministic bias) affecting
the balancing between two servers and a Negative Expo-
nential process representing task servicing times at servers.
Nevertheless, the implementation always rely on the use of
a uniform distributed variabler ∼ U(0, 1).

In Figure 1 the model topology is represented along with
the main model parameters and derived traffic magnitudes
that will be used in the Simulations section.

With the DEVS specification of these components and
their defined interconnections, we built the same system in
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two different DEVS Simulation Tools (PowerDEVS [11]
and CD++ [14]) parameterizing them with identical values,
and run several simulations at different operating points for
comparison and validation purposes.

5.5. Simulation Results

In order to validate results, we describe the given ex-
ample model by means of basic queuing theory, derive the
equations describing the system, and then compare simula-
tion results against the expected theoretical values.

A single server with no queuing capacity can be de-
scribed by aM/M/m/m system withm = 1 [9]. This
description assumes exponential inter-arrival times and ex-
ponential service times which match our case. For the i-th
server we have the parametersλi (arrival rate) andµi (ser-
vice rate). Thetraffic intensityis defined

ρi = λi/µi (1)

Because of the limited buffering capacity (in our simplest
case, only the servicing task can be ”buffered”) there is a
probability of losing tasks, which will never be serviced.
This probability is denotedPlossi

(probability of loss) and
is related with the traffic intensity byErlang´s loss formula
[9] in its simplest form for a single server:

Plossi
= ρi/(1 + ρi) (2)

The i-th server will see at its input port aneffective arrival
rate:

λ
′

i = λi(1 − Plossi
) (3)

which under stability conditions2 is equal to theserver
throughputat its output port. In our LBM example, we have
i = 1, 2 for the two servers in the cluster (CL) sub-model.
Clearly, thetotal system throughputλ

′

must beλ
′

= λ
′

1+λ
′

2

hence being a function of thetotal system arrival rateλ and
the traffic intensitiesρ1, ρ2 at the servers.

These magnitudes are all calculated from model parame-
ters set up for simulation:dr (mean departure rate at LG, in
Tasks/second), bf (balancing factor at WB),st1, st2 (mean
service time at S1 and S2 respectively, inseconds) in the
following way:

λ = dr

µ1 = 1/st1 λ1 = bfλ

µ2 = 1/st2 λ2 = (1 − bf )λ

(4)

2In lossy systems, theeffective traffic intensityρ
′

i
= λ

′

i
/µi is always

ρ
′

i
< 1 so the typical stability conditionλi/µi < 1 is not required. Fi-

nite buffer systems are always stable since arriving tasks are lost when the
number of tasks in the system exceeds system capacity.

Now, with (1) and (4) in (2) we derive the internal loss
probabilities:

Ploss1
=

bfdrst1

1 + bfdrst1

, Ploss2
=

(1 − bf)drst2

1 + (1 − bf )drst2

(5)

Finally, we want to express thetotal system throughputin
terms of atotal system loss probabilityPloss like we did for
the individual servers. So with (3) and (5) we obtain:

Ploss = bfPloss1
+ (1 − bf)Ploss2

λ
′

= λ(1 − Ploss)
(6)
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Figure 2. Simulation Results. Test Scenario 1
dr = 10, bf = [0, 1], st1 = 0.2, st2 = 0.2

With equations (6) we completely characterize the sys-
tem in terms of offered load, loss probabilities and effective
throughput. Then, in Figure 2 we plot the theoretical curves
for Ploss, Ploss1

, Ploss2
andλ

′

as functions ofbf in a test
scenario 1chosen asTS1 = {dr = 10, bf = [0, 1], st1 =
0.2, st2 = 0.2}. In the same figure we plotted simulation re-
sults for the STDEVS model LBM parameterized according
the scenarioTS1, at a set of illustrative operational points
sweepingbf between 0 and 1.

It can be observed that simulation results match closely
the expected theoretical curves, for successive repetitions at
each point.

Simulation point values were derived from the output
event log files produced by simulation runs, using calcu-
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lated3 task ratevariables, thus obtainingλ
′sim andP sim

lossi
=

1 − (λ
′sim
i /λsim

i ). The statistical properties of the random
variables produced by the atomic models were verified to
match with those expected: uniform distribution forbf , dis-
crete Poisson distribution forλ and exponential distribution
for st1 andst2. This also produced Poisson distributed se-
ries of values for all the observed task rates, as expected.

6. Conclusions

We presented a novel formalism for describing stochas-
tic discrete event systems. Based on the system theoretical
approach of DEVS and making use of Probability Spaces,
STDEVS provides a formal framework for modeling and
simulation of generalized non deterministic discrete event
systems.

The development of STDEVS was motivated by a wider
project aimed to provide a unified framework for model-
ing and simulation of automated control techniques target-
ing the performance optimization of computer systems and
data networks; in interaction with continuous and hybrid
systems.

Thus, next steps will be oriented to develop STDEVS–
based libraries in PowerDEVS and CD++ for modeling and
simulation of general computer systems and data networks.
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