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Abstract— This paper introduces a method to One of the major drawbacks of the QSS methods is the
achieve reltive error control in Quantized State Sys- need of choosing a quantization parameter (called quan-
tem (QSS) methods. Based on the use of logarith- tum) for each state variable, as the efficience and accu-
mic quantization, the proposed methodology solves racy of the simulation depends strongly on this choice.
the problem of quantum selection. The problem is also related to the fact that the methods

o ) intrinsically control the absolute error instead of therel

Keywords— Quantization Based Integration, tje error as classic variable step methods do.

Continuous System Simulation. This work shows that the use of time varying quanti-
zation, proportional to the magnitude of each state vari-
| INTRODUCTION able (i.e., logarithmic quantization), leads to an intigns

relative error control in the QSS methods. Moreover, it
Numerical integration of ordinary differential equationsyij| be shown that the relative error is approximately pro-
(ODEs) is a topic of permanent research and developprtional to the constant factor that relates the quantum
ment. Based on classic methods like Euler, RUnge—Kutﬁth the state magnitude_ This property will permit se-
and Adams and impulsed with the development of modecting directly the relative tolerance as a global propert
ern and fast computers, several variable—step and impligjf the simulation (as it is done in discrete time variable
ODE solver methods were introduced [3, 4, 1]. step methods).

Simultaneously, different software simulation tools The paper is organized as follows. After introducing
implementing those modern methods have been devegome notation, Section Il presents the principles of quan-
oped. Matlab/Simulink [13] and Dymola [2] can be men+ization based integration and the QSS methods. Then,
tioned among the most popular and efficient general pugection Il introduces the main result (i.e., the relation-
pose ODE simulation packages. ship between logarithmic quantization and relative error

In spite of the several differences between the mermontrol) and Section IV apply these results to two simu-
tioned ODE solvers, all of them share a property: thejation examples.
are based on time discretization. This is, they give a so- . L
lution obtained from a difference equation system, i.e. & Notationand Preliminaries
discrete—time model. In the sequel,| M |, Re(M) andIm (M) denote the el-

A completely different approach started to develogmentwise magnitude, real part and imaginary part, re-
since the end of the 90's, where time discretization is respectively, of a (possibly complex) matrix or vectbf.
placed by state variables quantization. As a result, tH&lso, z < y (= < y) denotes the set of componentwise
simulation models are not discrete time but discrete evefgtrict) inequalities between the components of the real
systems. The origin of this idea can be found in the defiectorsz andy, and similarly forz > y (z > y). Ac-
nition of Quantized Systems [14]. cording to these definitions, it is easy to show that

This idea was then reformulated with the addition
of hysteresis —to avoid the appearance of infinitely fast |z +y| < |z + yl,
oscillations— and formalized as the Quantized State Sys- n mxn
tems (QSS) method for ODE integration in [7]. Thiswhenevem,y € C* andM € C™"™.
was followed by the definition of the second order QSS2 || QUANTIZATION BASED INTEGRATION
method [5], the third order QSS3 method .[11]’ afirst ' his section recalls the basis of Quantization Based Inte-
der Backward QSS method (BQSS) for stiff systems [8 . . .
and a first order Centered QSS for marginally stable sy ration (QBI) method_s. After presenting a S|n_1ple exam-
ems. ple that shows the principles of QBI, the family of QSS

methods is formally introduced.
The QSS—methods show some important advantages y

with respect to classic discrete time methods in the inté\  Introductory Example

gration of discontinuous ODEs [10], sparsity exploitationcgnsider the second order system
[5], explicit integration of stiff and marginally stablesy

tems [8], absolute stability, and the existence of a global Ba, (1) = x4,(1)
error bound [1]. Tq, (1) — g, (1)

|M x| < [M[-|z], (1)

(2)
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and the followingapproximation B QSS Method
i1(t) = floor(za(t)) = qa(t) 3) In the example i_ntroduced abpve, th.e states variables
io(t) = —floor(z1(t)) = —qi(t) were quantlzed with ?ﬁloor function. This kind of quan-
tization will not work in general cases due to the appear-
Consider also the initial conditionzi(to)) = ance of infinitely fast oscillations. The addition of hys-
4.5, z2(to) = 0.5. teresis to the quantization solves this problem and leads

Although the last system is nonlinear and discontinugp the QSS method [7].

ous, the so_lutionto the initial value problem can be easily A yniform hysteretic quantization function relates a
found. Notice thay (fo) = 4 andg(to) = 0 and these continuous input trajectory; (¢) with a piecewise con-
values remain unchanged until or x; have its integer giant output trajectory; (¢) that satisfies
value modified.

Then, we have; (t9) = 0 andzz(tg) = —4 meaning zi(t) i |g(tT) — zi(t)| = AQ;
thatz; is constant ands, decreases with a constant slope % (f) = @:(t”) otherwise
equal to—4. Thus, aftet; = to+0.5/4 = 0.125 units of
time z» reaches the valugandg. (t]") becomes-1 and andg;(tg) = z(tp). Thus,g;(t) only changes when it dif-

(4)

theniy (t7) = 1. fers fromz;(t) in £AQ;. The magnitude\Q); is called
The situation changes again whep reaches-1 at  quantum.

timet, = t; + 1/4. In that moment, we have, (t2) = Then, given a time invariant ODE

4.5 —1/4 = 4.25 andi (t]) = —2.
The next change now occurs whenreached at time o (t) = flza(t), u(t)], (5)

ty = ty + 0.25/2. Then,q(t7) = 3 and the slope in

x2 Now becomes-3. This analysis then continues in awherex(t) € R™ is the state vector ana(t) € R™ is an

similar way. input vector, which is a known piecewise constant func-
Figure 1 show the results of théémulation These re- tion, the QSS method [7] simulates an approximate sys-

sults look in fact similar to the solution of the originaltem, which is calledjuantized state systef@SS):

system 2.
o(t) = fla(t),u(t)). (6)

Here, ¢(t) is a vector ofquantized variablesvhich are
quantized versions of the state variables.

Each quantized variablg(t) is related with the corre-
sponding state variable;(¢) with a hysteretic quantiza-
tion function. Notice that instead of the time step size, we
have to choose the quantulwy; for each state variable.

Since¢(¢) and u(t) are piecewise constant, the left
hand side of (6) (the state derivatiiis also piecewise
constant and then the statg@) is a piecewise linear func-
tion of the time. These features allow solving Eq.(6) in a
straightforward way, as we did in the introductory exam-
a1 ple

A systematic way o§imulatingEq.(6) consists in find-
Figure 1: Trajectories in System (3) Ing a DEVS model that mimics the behavior of the quan-
tized system. That DEVS model can be easily built from

What we did in this example is to replaeg(t) by ¢;(t) ~ the Block Diagram representation of Eq.(6).
at the right hand side of the original equation. Then, the PowerDEVS [12], is a DEVS simulation software with
resulting system could be exactly integrated after a finitébraries that implement the complete family of QSS
number of steps. methods. There, an arbitrary ODE can be simulated with

The steps were produced at timgsty, to, . ... While  the QSS method just building the corresponding block di-
in any classical integration method we could find a difagram.
ference equation of the the formit,. 1) = f(x(tx)) to
express the evolution of the ag:)ro;ir)nated( sglst)e)m, hefe QSS2 and QSS3 Methods
this is no longer possible. The second order QBI method uses first order quantiza-

The steps irt; andt, involve changes i, while t3  tion. As it is shown in Figure 2, a first order quantizer
corresponds to a changegy. Evidently, each state vari- produces a piecewise linear output trajectory. Each sec-
able follows its own time steps and System (3) does ndion of that trajectory starts with the value and slope of the
behave like aliscrete time systenHowever, this behav- input and finishes when it differs from the inputAx);.
ior can be easily represented bygliacrete event systeim A formal definition of a first order quantization function
terms of the DEVS formalism. can be found in [5].
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First Order Quantizer

whereAQ is the vector of quantum adopted at each com-
ponent (in the case of BQSS and CQSS there is an addi-
tional term of error).

Inequality (7) holds for alk, for any input trajectory
and for any initial condition. Having a calculateable
global error bound makes a difference between QBI and
classic discrete time methods.

Il RELATIVE ERROR CONTROL

In this section, we shall show that using logarithmic
guantization, i.e., making the quantum proportional to
the magnitude of the quantized variable, QSS methods
Figure 2: Trajectories of a first—order quantizer.  achieve an intrinsic relative error control.

In order to prove this property, we need first to study

. . the effects of delayed—affine perturbations in a generic
The QSS2 method then approximates a system like (ﬁ'l system.

by (6) but now, the quantized variablgs$t) follow piece-
wise linear trajectories and the state variahlgq) are A Ultimate Bound with Affine Perturbations
piecewise parabolic functions of the time. The following theorem, proven in [6], is an auxiliary re-

The QSS3 method extends the idea of the QSSgit for the main result of this section.
method using second order quantization functions, so

that the quantized variable trajectorigé) are piecewise Theorem 1. Consider the system
parabolic and the state trajectorigsare piecewise cubic. N

Like in the case of QSS, the QSS2 and QSS3 meth- é(t) = Ae(t) + Hw(t) (8)
ods can be implemented in DEVS coupliggantized in-  wheree(t), w(t) € R*, H € R"** and A € R"*"
tegratorsandstatic functions These DEVS models are js 3 Hurwitz matrix with Jordan canonical form =
similar to those of QSS, but they now take account of the—1 4y, Suppose thatw(t)| < w,, forall 0 < ¢t < 7

slopes. and define
The advantage of QSS2 and QSS3 is that they per-
mit using a small quantum —i.e., a small error tolerance— SE|[Re(A)] - VTIH]|. (9)

without increasing considerably the number of calcula- o
tions. In QSS, the number of steps is inversely propor-"€n: ifV"1e(0)] < Swy,, thenforallo < ¢ <,
tional with the quantum. In QSS2 itis inversely proporyy |y ~1¢(4)| < Sw,,.

tional with the square root of the quantum, and, in QSS3

the number of steps grows with the inverse of the cubig) le(t)] < [V]Swn,.

root of the quantum. The following theorem estimates an ultimate bound for

D BQSS and CQSS Method a LTI system with perturbations bounded by an affine de-
The BQSS method is similar to QSS, hytis always t’:\yrtiadnfunc?on rotf thfethstatleti.mPflrttl)culﬁ:jly, Sthov';lifn tr;edlnb-
chosen so that;(t) goes tog;(t). It also uses a uniform Ti arC:Ean?EQyO € ulimate bound set estimated by
quantum and the quantized variabjes restricted so that eore of [9].
it never differs fromy; in more thanAQ;. The advantage Theorem 2. Consider the perturbed system
of BQSS is that it permits simulating stiff systems.

CQSS is a blend between BQSS and QSS, that takes é(t) = Ae(t) + Hw(t), (10)
the value ofg; equal to the mean of both methods. The_ heree(t) € R™, A € R™" is a Hurwitz matrix with

method —being appropriate for stiff systems— is also ﬁeran canonical form\ — VAV, H ¢ R"* and

stable, i.e., it conserves the stability properties even 0 curbati Sbles() ¢ R* satisfies th
the imaginary axis. This feature makes it suitable for' € perturbation variables(¢) € R* satisfies the compo-

the simulation ofnarginally stablesystems (i.e., systems hentwise bound
without or with very small damping). lw(t)| < FO(t) +w forall t > to, (11)

E Theoretical Properties of QBI Methods with F € RF*" @ e R’i,o: and

The most important property of the QBI methods is the o

existence of a global error bound. Given a LTI system 0(t) £ max |z(7)], (12)
Tq(t) = Az, (t) + Bu(t) where A is a Hurwitz matrix fosTst

with Jordan canonical form. = V~'AV, the error in  where the maximum is taken componentwise.

the QSS methods is always bounded by Define

le(O)] < [VIIRe(A)T"A[VTHAQ (7) R £ |V]|[Re(A) "'V H|, (13)
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suppose thaRF < 1 (componentwise), and let where|Axz(t)| < AQ(¢) for all t > ¢5. Then, taking one

R component ofAx; we have
b2 (I- RF) 'Ruw. (14)

Assume also that(t) = 0, V¢ < to ande(to) = 0, then, el i AQu(t) = max(Eret, - |zi(tr)], AQumin,)
it results thatle(t)| < b, V¢t > to. < max(Erer, - |7a,(t) + €i(tr), AQmin,)
A . § Ereli |ei (tk>| + maX(Ereli : |xai (tk)|; AsznL)
Proof. Take an arbitrary constaat e R™, withe > 0
ande # 0. forty <t < tgyr.
Suppose for a contradiction thatt)| £ b+« for some Taking into account that
instant of timet with ¢ty < ¢ < oo and definet,. as the

first instant of time in which this situation occurs: lei(te)] < 0;(t) =  max lei(7)]
0TS

tc £inft, subjecttot > toandle(t)| £ b+e. (15) .4 ais0

Then, we havee(t)] < b+ ¢ fort € [to,t.). From ) B
Eq.(12) it results thaf(t) < b+ ¢ for t € [to,t.) and [0, (t0)] < t:ipﬁ('x“i (£)) = Tmaz,
then, using Eq.(16), we obtain o

we can apply Theorem 2 to system (22).
lw)| < F(b+e)+w forallt € [to,tc).  (16)  TakingH = A, Fj; = Eyep,, w; = max(Epe, -
Tmaz;s AQmin, ), and assuming that(RF) < 1, we

Taking into account that(0) = 0 we can apply Theo- conclude that

rem 1 withv,,, = F(b+ ¢) + w, which results in

71 —

le(t)] < |V|Svm = R(Fb+¢) + ) = b+ RFe (17) le(®)] < (I - RF)™" Rw. (23)
Using the fact thaRF < 1, we finally get Calling E,..; to the diagonal matrix with diagonal entries
Erer;, andAQ 4, to the vector of minimum quanta, we

le(t)| <b+e (18) finally obtain

forto <t < t.. The continuity ofe(t) then contradicts |e(t)| < (I — RE,;) ' Rmax(Eye - [Tmaz|s AQmin)-

the assumptiofe(t)| £ b + ¢ at timet. and concludes (24)
the proof. O  Itbecomesclear that, provided thatreaches some large

. . . L value, the bound ofe(t)| is proportional to that maxi-
B Error Bound with Logarithmic Quantization mum value, i.e., théﬂeérzl)r bgun% is relative to the maxi-
The basic idea of logarithmic quantization is to take thenum value ofx,. In other words, we have an intrinsic
value of the quantun\Q; proportional tox;. Sincex; relative error control.
changes continuously with the time, and we do not want An interesting case occurs whéh,;, = E, fori =
the quantum to change continuously, it makes sense 10, n, i.e., when we apply the same factor to all the
take AQ; proportional to the value of; when it last state variables. In that case we obtain the same expression
reached an event condition. of (24), but nowE, . is a scalar constant.

Yet, if the quantum is chosen in that way, a problem The stability of the numerical solution is ensured by

will occur whenz; evolves near zero. In that cas®l);  the condition? - E,.; < 1, which will be always satisfied
will result too small and an unnecesarily large number ofor small values off

rel-

events would be prOduced. Thus, the correct choice for In most app“cationS, we shall choose a very small

the quantum must have the form: value for E,;. A typical value would beE, ., = 0.01

or evenk,.; = 0.001. In that case, we can approximate
AQi(t) = max(Brar,  wi(ti)|, AQmin,  (19) g4 24 o PP

wherety, is the last event time im; (i.e.,t) <t < tpy1).

Then, if we want to simulate a LTI system le()] < Rmax(Erer - [#maal; AQmin)- (25)

To(t) = A-2,(t) + B -u(t) (20) IV EXAMPLES
. A . The following examples were implemented and simu-
Defining Az (t) = q(t) — #(t), the QSS methods will |a404 with PowerDEVS using a notebook running under
approximate it by Windows XP with 933MhZ Pentium Il processor.

i(t) =A- (z(t) + Az(t)) + B-u(t)  (21) A Mass—Spring—Damper System
Substracting (20) from (21), we obtain the equation fof he LTI system
the errore(t) = x(t) — x4 (t):

e(t) = z(t) — za(?) i(t) = o(t)

6(t) = Afe(t) + A(r) @2 () = m(—ka(t) bt b uolt)
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represents a mass—spring-damper system with an exter

forceug(t). In this experiment, we shall consider that
10 if0<t<10 = o~
U()(t) = - (27) 8 / \\ .
0 otherwise 2 = /
Taking parameteré = m = b = 1, and selecting ™ | / / |
Ere = 0.01, AQumn = 0.001 in both state variables, the o<1 /
simulation with the QSS2 method gives the result show =, 1 | A‘ﬁ / /
ATV T
o T =
BN
1. T = I’(t) t|me
Figure 4: Absolute error
RN
=/ simulation with uniform quantization, however, increases
8 w(E) — 10 times the number of steps.
— ) In other words, the computational costs using logarith-
mic quantization is almost independent of the magnitude
\\/’ of the signals, while using uniform quantization, the costs
i A A A are highly dependent on these magnitudes.

time

B 80th order marginally stable stiff nonlinear

, . ) ) system

Figure 3: Spring—Mass System Trajectories ) )
The following system of equations represents a lumped

Since the system is LTI, we can calculate the maximurf'ode! of  lossless LC transmission line whére- ' =

error following the analysis of Section B. In this case» With @ nonlinear load at the end:

Eq.(24) results: $1 = uo(t) — ui(t); i = p1(t) — ha(t)

2421 2.421 Comas
le(t)| < {2.421 2.421] -max(0.01- { } s AQmin)-

UTTL(I.’,C

gf.)j = Ujfl(ﬂ — U](t>, ﬁj = ¢j (t) - ¢j+1(t) (29)

wherex,, ... andv,,,, are the maximum absolute value
reached by: andv in Eq.(26).

Then, it results that the error in each variable is theo- . )
retically bounded by On = Un—1(t) = un(t); in = dn(t) — g(un(t))

les (£)] < 0.02421 - (Zimag + Umas) ~ 0.396  (28) We consider an input pulse entering the ling, given
by Eq.(27), and a nonlinear load with a lapu,,(t)) =
Figure 4 corroborates this bound fo(t). It also com- (10000 - u,,)*. We also set null initial conditions; =
pares the absolute errér, (¢)| with the magnitude that ¢; = 0.
bounds the quantury,..;|«(t)|, showing that there is a  We consider 40 LC sections (i.e:,= 40), which re-
close relationship between these quantities. sults in a80*" order system. The linearization around the

If uniform quantization were used, the error in Figure %rigin (u; = ¢; = 0), shows that the system is marginally
would have been bounded by a constant instead of beistpble (the linearized model does not have any damping
bounded by a signal proportional to the actual value derm). Also, the system is stiff (the nonlinear load adds a
the state. fast mode whem,, grows).

The number of steps performed by the simulation was We decided to simulate the system of Eq.(29) using
115 and 156 i andw, respectively. A similar number the F-stable CQSS method with logarithmic quantization
of steps using QSS2 with uniform quantization can bwith E,..; = 0.01 and AQ,,;» = 0.0001 in all the state
obtained selectingh@ = 0.01. However, the simulation variables.
with this quantum provokes an important realtive error To obtain the first 100 seconds of simulated time,
when the trajectories cross near zero. CQSS needed about 47 seconds. Figure 5 shows the volt-

Moreover, if we increase the foreg(¢) by a factor of age at theéd5!” section of the line (i.e., near the load end).
100, the simulation with logarithmic quantization using In order to analyze the accuracy of the results, we sim-
the same settings than before performs almost the samiated the system with Matlab’s ode15s method (odel5s
number of steps (there are only 50 aditional steps). Theas the best Matlab algorithm for this example) using a
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u3s(t)

\ / \/\\/

T T T T T T T
10 20 30 40 0 7 80 90 100

"0 | o
time

Figure 5: CQSS simulation of System (29)

computational efficience.

(1]

(2]

(3]

(4]

[5]

very small error tolerance (we set the relative and abso-

lute error tol x 10~'2). We found that the results ob-

tained with CQSS are very similar to those obtained with
odel5s, and they cannot be distinguished with the nake{b]

eye.

Increasing the amplitude of the input pulse by a fac-
tor of 100, the simulation time grows to 86 seconds.

Increasing it again by a factor of 100 (i.e., selecting
u(t) = 100000) the simulation time becomes 125 sec-

onds.

[7]

Using uniform quantization, in order to get a simi-

lar accuracy, we need to selest) = 0.01 in all the
state variables except for the one correspondingsto

(8]

where the signal is too small and an appropriate value is

AQ = 0.0001. Although with this choice we get faster

results (about 18 seconds), whenever we increase the in-
put amplitude by a factor of 100, the simulation time also [9]

increases about this factor.

This analysis shows that logarithmic quantization can
be used with any QBI method and it works providing a

selected accuracy irrespective of the signal amplitud
(which are usually unknown before the simulation is pe

formed).

iEO]

On the other hand, uniform quantization depends
strongly on the system and its input signals and initigl11]
conditions. In many cases, if we do not know anything
about the system trajectories, it is almost impossible to

select an appropriate uniform quantum.

V Conclusions

(12]

We introduced a modifiction to QSS methods, where the
quantum grows and dcreases proportional to the magni-
tude of the corresponding state variable. We showed that
this strategy produces an intrinsic relative error control

in contrast to the absolute error control associated to theg)

use of uniform quantization.

The main advantage of the proposed methodology is
that a user can select directly the relative tolerance of a
simulation without a prior knowledge about the systenjl14]
trajectories. This idea makes QSS methods more robust
and much easier to use, without sacrifying accuracy or
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