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Abstract— This paper introduces a method to
achieve reltive error control in Quantized State Sys-
tem (QSS) methods. Based on the use of logarith-
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the problem of quantum selection.
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I INTRODUCTION

Numerical integration of ordinary differential equations
(ODEs) is a topic of permanent research and develop-
ment. Based on classic methods like Euler, Runge–Kutta
and Adams and impulsed with the development of mod-
ern and fast computers, several variable–step and implicit
ODE solver methods were introduced [3, 4, 1].

Simultaneously, different software simulation tools
implementing those modern methods have been devel-
oped. Matlab/Simulink [13] and Dymola [2] can be men-
tioned among the most popular and efficient general pur-
pose ODE simulation packages.

In spite of the several differences between the men-
tioned ODE solvers, all of them share a property: they
are based on time discretization. This is, they give a so-
lution obtained from a difference equation system, i.e. a
discrete–time model.

A completely different approach started to develop
since the end of the 90’s, where time discretization is re-
placed by state variables quantization. As a result, the
simulation models are not discrete time but discrete event
systems. The origin of this idea can be found in the defi-
nition of Quantized Systems [14].

This idea was then reformulated with the addition
of hysteresis –to avoid the appearance of infinitely fast
oscillations– and formalized as the Quantized State Sys-
tems (QSS) method for ODE integration in [7]. This
was followed by the definition of the second order QSS2
method [5], the third order QSS3 method [11], a first or-
der Backward QSS method (BQSS) for stiff systems [8],
and a first order Centered QSS for marginally stable sys-
tems.

The QSS–methods show some important advantages
with respect to classic discrete time methods in the inte-
gration of discontinuous ODEs [10], sparsity exploitation
[5], explicit integration of stiff and marginally stable sys-
tems [8], absolute stability, and the existence of a global
error bound [1].

One of the major drawbacks of the QSS methods is the
need of choosing a quantization parameter (called quan-
tum) for each state variable, as the efficience and accu-
racy of the simulation depends strongly on this choice.
The problem is also related to the fact that the methods
intrinsically control the absolute error instead of the rela-
tive error as classic variable step methods do.

This work shows that the use of time varying quanti-
zation, proportional to the magnitude of each state vari-
able (i.e., logarithmic quantization), leads to an intrinsic
relative error control in the QSS methods. Moreover, it
will be shown that the relative error is approximately pro-
portional to the constant factor that relates the quantum
with the state magnitude. This property will permit se-
lecting directly the relative tolerance as a global property
of the simulation (as it is done in discrete time variable
step methods).

The paper is organized as follows. After introducing
some notation, Section II presents the principles of quan-
tization based integration and the QSS methods. Then,
Section III introduces the main result (i.e., the relation-
ship between logarithmic quantization and relative error
control) and Section IV apply these results to two simu-
lation examples.

A Notation and Preliminaries

In the sequel,|M |, Re(M) andIm(M) denote the el-
ementwise magnitude, real part and imaginary part, re-
spectively, of a (possibly complex) matrix or vectorM .
Also, x ≤ y (x < y) denotes the set of componentwise
(strict) inequalities between the components of the real
vectorsx andy, and similarly forx ≥ y (x > y). Ac-
cording to these definitions, it is easy to show that

|x + y| ≤ |x| + |y|, |M x| ≤ |M | · |x|, (1)

wheneverx, y ∈ Cn andM ∈ Cm×n.

II QUANTIZATION BASED INTEGRATION

This section recalls the basis of Quantization Based Inte-
gration (QBI) methods. After presenting a simple exam-
ple that shows the principles of QBI, the family of QSS
methods is formally introduced.

A Introductory Example

Consider the second order system

ẋa1
(t) = xa2

(t)
ẋa2

(t) = −xa1
(t)

(2)
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and the followingapproximation:

ẋ1(t) = floor(x2(t)) = q2(t)
ẋ2(t) = −floor(x1(t)) = −q1(t)

(3)

Consider also the initial conditionx1(t0) =
4.5, x2(t0) = 0.5.

Although the last system is nonlinear and discontinu-
ous, the solution to the initial value problem can be easily
found. Notice thatq1(t0) = 4 andq2(t0) = 0 and these
values remain unchanged untilx1 or x2 have its integer
value modified.

Then, we havėx1(t0) = 0 andẋ2(t0) = −4 meaning
thatx1 is constant andx2 decreases with a constant slope
equal to−4. Thus, aftert1 = t0 +0.5/4 = 0.125 units of
time x2 reaches the value0 andq2(t

+

1 ) becomes−1 and
thenẋ1(t

+

1 ) = 1.
The situation changes again whenx2 reaches−1 at

time t2 = t1 + 1/4. In that moment, we havex1(t2) =
4.5 − 1/4 = 4.25 andẋ1(t

+

2 ) = −2.
The next change now occurs whenx1 reaches4 at time

t3 = t2 + 0.25/2. Then,q1(t
+

3 ) = 3 and the slope in
x2 now becomes−3. This analysis then continues in a
similar way.

Figure 1 show the results of thissimulation. These re-
sults look in fact similar to the solution of the original
system 2.
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Figure 1: Trajectories in System (3)

What we did in this example is to replacexi(t) by qi(t)
at the right hand side of the original equation. Then, the
resulting system could be exactly integrated after a finite
number of steps.

The steps were produced at timest0, t1, t2, . . . . While
in any classical integration method we could find a dif-
ference equation of the the formx(tk+1) = f(x(tk)) to
express the evolution of the approximated system, here
this is no longer possible.

The steps int1 andt2 involve changes inq2 while t3
corresponds to a change inq3. Evidently, each state vari-
able follows its own time steps and System (3) does not
behave like adiscrete time system. However, this behav-
ior can be easily represented by adiscrete event systemin
terms of the DEVS formalism.

B QSS Method

In the example introduced above, the states variables
were quantized with afloor function. This kind of quan-
tization will not work in general cases due to the appear-
ance of infinitely fast oscillations. The addition of hys-
teresis to the quantization solves this problem and leads
to the QSS method [7].

A uniform hysteretic quantization function relates a
continuous input trajectoryxi(t) with a piecewise con-
stant output trajectoryqi(t) that satisfies

qi(t) =

{

xi(t) if |qi(t
−) − xi(t)| = ∆Qi

qi(t
−) otherwise

(4)

andqi(t0) = x(t0). Thus,qi(t) only changes when it dif-
fers fromxi(t) in ±∆Qi. The magnitude∆Qi is called
quantum.

Then, given a time invariant ODE

ẋa(t) = f [xa(t), u(t)], (5)

wherex(t) ∈ R
n is the state vector andu(t) ∈ R

m is an
input vector, which is a known piecewise constant func-
tion, the QSS method [7] simulates an approximate sys-
tem, which is calledquantized state system(QSS):

ẋ(t) = f(q(t), u(t)). (6)

Here,q(t) is a vector ofquantized variableswhich are
quantized versions of the state variables.

Each quantized variableqi(t) is related with the corre-
sponding state variablexi(t) with a hysteretic quantiza-
tion function. Notice that instead of the time step size, we
have to choose the quantum∆qi for each state variable.

Since q(t) and u(t) are piecewise constant, the left
hand side of (6) (the state derivativeẋ) is also piecewise
constant and then the statex(t) is a piecewise linear func-
tion of the time. These features allow solving Eq.(6) in a
straightforward way, as we did in the introductory exam-
ple.

A systematic way ofsimulatingEq.(6) consists in find-
ing a DEVS model that mimics the behavior of the quan-
tized system. That DEVS model can be easily built from
the Block Diagram representation of Eq.(6).

PowerDEVS [12], is a DEVS simulation software with
libraries that implement the complete family of QSS
methods. There, an arbitrary ODE can be simulated with
the QSS method just building the corresponding block di-
agram.

C QSS2 and QSS3 Methods

The second order QBI method uses first order quantiza-
tion. As it is shown in Figure 2, a first order quantizer
produces a piecewise linear output trajectory. Each sec-
tion of that trajectory starts with the value and slope of the
input and finishes when it differs from the input in∆Qi.
A formal definition of a first order quantization function
can be found in [5].
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Figure 2: Trajectories of a first–order quantizer.

The QSS2 method then approximates a system like (5)
by (6) but now, the quantized variablesqi(t) follow piece-
wise linear trajectories and the state variablesxi(t) are
piecewise parabolic functions of the time.

The QSS3 method extends the idea of the QSS2
method using second order quantization functions, so
that the quantized variable trajectoriesqi(t) are piecewise
parabolic and the state trajectoriesxi are piecewise cubic.

Like in the case of QSS, the QSS2 and QSS3 meth-
ods can be implemented in DEVS couplingquantized in-
tegratorsandstatic functions. These DEVS models are
similar to those of QSS, but they now take account of the
slopes.

The advantage of QSS2 and QSS3 is that they per-
mit using a small quantum –i.e., a small error tolerance–
without increasing considerably the number of calcula-
tions. In QSS, the number of steps is inversely propor-
tional with the quantum. In QSS2 it is inversely propor-
tional with the square root of the quantum, and, in QSS3
the number of steps grows with the inverse of the cubic
root of the quantum.

D BQSS and CQSS Method

The BQSS method is similar to QSS, butqi is always
chosen so thatxi(t) goes toqi(t). It also uses a uniform
quantum and the quantized variableqi is restricted so that
it never differs fromqi in more than∆Qi. The advantage
of BQSS is that it permits simulating stiff systems.

CQSS is a blend between BQSS and QSS, that takes
the value ofqi equal to the mean of both methods. The
method –being appropriate for stiff systems– is also F-
stable, i.e., it conserves the stability properties even on
the imaginary axis. This feature makes it suitable for
the simulation ofmarginally stablesystems (i.e., systems
without or with very small damping).

E Theoretical Properties of QBI Methods

The most important property of the QBI methods is the
existence of a global error bound. Given a LTI system
ẋa(t) = Axa(t) + Bu(t) whereA is a Hurwitz matrix
with Jordan canonical formΛ = V −1AV , the error in
the QSS methods is always bounded by

|e(t)| ≤ |V ||Re(Λ)−1Λ||V −1|∆Q (7)

where∆Q is the vector of quantum adopted at each com-
ponent (in the case of BQSS and CQSS there is an addi-
tional term of error).

Inequality (7) holds for allt, for any input trajectory
and for any initial condition. Having a calculateable
global error bound makes a difference between QBI and
classic discrete time methods.

III RELATIVE ERROR CONTROL

In this section, we shall show that using logarithmic
quantization, i.e., making the quantum proportional to
the magnitude of the quantized variable, QSS methods
achieve an intrinsic relative error control.

In order to prove this property, we need first to study
the effects of delayed–affine perturbations in a generic
LTI system.

A Ultimate Bound with Affine Perturbations

The following theorem, proven in [6], is an auxiliary re-
sult for the main result of this section.

Theorem 1. Consider the system

ė(t) = Ae(t) + Hw(t) (8)

wheree(t), w(t) ∈ Rk, H ∈ Rn×k and A ∈ Rn×n

is a Hurwitz matrix with Jordan canonical formΛ =
V −1AV . Suppose that|w(t)| ≤ wm for all 0 ≤ t ≤ τ
and define

S ,
∣

∣[Re(Λ)]−1 · V −1H
∣

∣ . (9)

Then, if|V −1e(0)| ≤ Swm, then for all0 ≤ t ≤ τ ,

a) |V −1e(t)| ≤ Swm.

b) |e(t)| ≤ |V |Swm.

The following theorem estimates an ultimate bound for
a LTI system with perturbations bounded by an affine de-
layed function of the state. Particularly, shows the in-
variance property of the ultimate bound set estimated by
Theorem 1 of [9].

Theorem 2. Consider the perturbed system

ė(t) = Ae(t) + Hw(t), (10)

wheree(t) ∈ Rn, A ∈ Rn×n is a Hurwitz matrix with
Jordan canonical formΛ = V −1AV , H ∈ Rn×k and
the perturbation variablew(t) ∈ R

k satisfies the compo-
nentwise bound

|w(t)| ≤ Fθ(t) + w̄ for all t ≥ t0, (11)

with F ∈ R
k×n
+,0 , w̄ ∈ Rk

+,0, and

θ(t) , max
t0≤τ≤t

|x(τ)|, (12)

where the maximum is taken componentwise.
Define

R , |V |
∣

∣[Re(Λ)]−1V −1H
∣

∣ , (13)



XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

suppose thatRF < 1 (componentwise), and let

b , (I − RF )−1Rw̄. (14)

Assume also thatθ(t) = 0, ∀t < t0 ande(t0) = 0, then,
it results that|e(t)| ≤ b, ∀t ≥ t0.

Proof. Take an arbitrary constantε ∈ Rn, with ε ≥ 0
andε 6= 0.

Suppose for a contradiction that|e(t)| 6≤ b+ε for some
instant of timet with t0 < t < ∞ and definetc as the
first instant of time in which this situation occurs:

tc , inf t, subject tot ≥ t0 and|e(t)| 6≤ b + ε. (15)

Then, we have|e(t)| ≤ b + ε for t ∈ [t0, tc). From
Eq.(12) it results thatθ(t) ≤ b + ε for t ∈ [t0, tc) and
then, using Eq.(16), we obtain

|w(t)| ≤ F (b + ε) + w̄ for all t ∈ [t0, tc). (16)

Taking into account thate(0) = 0 we can apply Theo-
rem 1 withvm = F (b + ε) + w̄, which results in

|e(t)| ≤ |V |Svm = R(Fb + ε) + w̄) = b + RFε (17)

Using the fact thatRF < 1, we finally get

|e(t)| < b + ε (18)

for t0 ≤ t < tc. The continuity ofe(t) then contradicts
the assumption|e(t)| 6≤ b + ε at timetc and concludes
the proof.

B Error Bound with Logarithmic Quantization

The basic idea of logarithmic quantization is to take the
value of the quantum∆Qi proportional toxi. Sincexi

changes continuously with the time, and we do not want
the quantum to change continuously, it makes sense to
take ∆Qi proportional to the value ofxi when it last
reached an event condition.

Yet, if the quantum is chosen in that way, a problem
will occur whenxi evolves near zero. In that case,∆Qi

will result too small and an unnecesarily large number of
events would be produced. Thus, the correct choice for
the quantum must have the form:

∆Qi(t) = max(Ereli · |xi(tk)|, ∆Qmini
(19)

wheretk is the last event time inxi (i.e.,tk ≤ t < tk+1).
Then, if we want to simulate a LTI system

ẋa(t) = A · xa(t) + B · u(t) (20)

Defining ∆x(t) , q(t) − x(t), the QSS methods will
approximate it by

ẋ(t) = A · (x(t) + ∆x(t)) + B · u(t) (21)

Substracting (20) from (21), we obtain the equation for
the errore(t) = x(t) − xa(t):

ė(t) = A(e(t) + ∆x(t)) (22)

where|∆x(t)| ≤ ∆Q(t) for all t ≥ t0. Then, taking one
component of∆xi we have

|∆xi(t)| ≤ ∆Qi(t) = max(Ereli · |xi(tk)|, ∆Qmini
)

≤ max(Ereli · |xai
(tk) + ei(tk)|, ∆Qmini

)

≤ Ereli |ei(tk)| + max(Ereli · |xai
(tk)|, ∆Qmini

)

for tk ≤ t < tk+1.
Taking into account that

|ei(tk)| ≤ θi(t) , max
t0≤τ≤t

|ei(τ)|

and also

|xai
(tk)| ≤ sup

t0≤τ≤t

(|xai
|(t)) = xmaxi

we can apply Theorem 2 to system (22).
Taking H = A, Fi,i = Ereli , w̄i = max(Ereli ·

xmaxi
, ∆Qmini

), and assuming thatρ(RF ) < 1, we
conclude that

|e(t)| ≤ (I − RF )−1Rw̄. (23)

CallingErel to the diagonal matrix with diagonal entries
Ereli , and∆Qmin to the vector of minimum quanta, we
finally obtain

|e(t)| ≤ (I − RErel)
−1R max(Erel · |xmax|, ∆Qmin).

(24)
It becomes clear that, provided thatxa reaches some large
value, the bound on|e(t)| is proportional to that maxi-
mum value, i.e., the error bound is relative to the maxi-
mum value ofxa. In other words, we have an intrinsic
relative error control.

An interesting case occurs whenEreli = Erel for i =
1, . . . , n, i.e., when we apply the same factor to all the
state variables. In that case we obtain the same expression
of (24), but nowErel is a scalar constant.

The stability of the numerical solution is ensured by
the conditionR ·Erel < 1, which will be always satisfied
for small values ofErel.

In most applications, we shall choose a very small
value forErel. A typical value would beErel = 0.01
or evenErel = 0.001. In that case, we can approximate
Eq.(24) as:

|e(t)| ≤ R max(Erel · |xmax|, ∆Qmin). (25)

IV EXAMPLES

The following examples were implemented and simu-
lated with PowerDEVS using a notebook running under
Windows XP with 933MhZ Pentium III processor.

A Mass–Spring–Damper System

The LTI system

ẋ(t) = v(t)

v̇(t) = 1/m(−k · x(t) − b · v(t) + u0(t))
(26)
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represents a mass–spring-damper system with an external
forceu0(t). In this experiment, we shall consider that

u0(t) =

{

10 if 0 ≤ t ≤ 10

0 otherwise
(27)

Taking parametersk = m = b = 1, and selecting
Erel = 0.01, ∆Qmin = 0.001 in both state variables, the
simulation with the QSS2 method gives the result shown
in Figure 3.

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

8

10

12 x(t)

v(t)

time

x
(t

),
v
(t

)

Figure 3: Spring–Mass System Trajectories

Since the system is LTI, we can calculate the maximum
error following the analysis of Section B. In this case,
Eq.(24) results:

|e(t)| ≤

[

2.421 2.421
2.421 2.421

]

·max(0.01 ·

[

xmax

vmax

]

, ∆Qmin).

wherexmax andvmax are the maximum absolute value
reached byx andv in Eq.(26).

Then, it results that the error in each variable is theo-
retically bounded by

|ei(t)| ≤ 0.02421 · (xmax + vmax) ≈ 0.396 (28)

Figure 4 corroborates this bound forx(t). It also com-
pares the absolute error|ex(t)| with the magnitude that
bounds the quantumErel|x(t)|, showing that there is a
close relationship between these quantities.

If uniform quantization were used, the error in Figure 4
would have been bounded by a constant instead of being
bounded by a signal proportional to the actual value of
the state.

The number of steps performed by the simulation was
115 and 156 inx andv, respectively. A similar number
of steps using QSS2 with uniform quantization can be
obtained selecting∆Q = 0.01. However, the simulation
with this quantum provokes an important realtive error
when the trajectories cross near zero.

Moreover, if we increase the forceu0(t) by a factor of
100, the simulation with logarithmic quantization using
the same settings than before performs almost the same
number of steps (there are only 50 aditional steps). The
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Figure 4: Absolute error

simulation with uniform quantization, however, increases
10 times the number of steps.

In other words, the computational costs using logarith-
mic quantization is almost independent of the magnitude
of the signals, while using uniform quantization, the costs
are highly dependent on these magnitudes.

B 80th order marginally stable stiff nonlinear
system

The following system of equations represents a lumped
model of a lossless LC transmission line whereL = C =
1, with a nonlinear load at the end:

φ̇1 = u0(t) − u1(t); u̇1 = φ1(t) − φ2(t)

...

φ̇j = uj−1(t) − uj(t); u̇j = φj(t) − φj+1(t)

...

φ̇n = un−1(t) − un(t); u̇n = φn(t) − g(un(t))

(29)

We consider an input pulse entering the line,u0, given
by Eq.(27), and a nonlinear load with a lawg(un(t)) =
(10000 · un)3. We also set null initial conditionsui =
φi = 0.

We consider 40 LC sections (i.e.,n = 40), which re-
sults in a80th order system. The linearization around the
origin (ui = φi = 0), shows that the system is marginally
stable (the linearized model does not have any damping
term). Also, the system is stiff (the nonlinear load adds a
fast mode whenun grows).

We decided to simulate the system of Eq.(29) using
the F–stable CQSS method with logarithmic quantization
with Erel = 0.01 and∆Qmin = 0.0001 in all the state
variables.

To obtain the first 100 seconds of simulated time,
CQSS needed about 47 seconds. Figure 5 shows the volt-
age at the35th section of the line (i.e., near the load end).

In order to analyze the accuracy of the results, we sim-
ulated the system with Matlab’s ode15s method (ode15s
was the best Matlab algorithm for this example) using a
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Figure 5: CQSS simulation of System (29)

very small error tolerance (we set the relative and abso-
lute error to1 × 10−12). We found that the results ob-
tained with CQSS are very similar to those obtained with
ode15s, and they cannot be distinguished with the naked
eye.

Increasing the amplitude of the input pulse by a fac-
tor of 100, the simulation time grows to 86 seconds.
Increasing it again by a factor of 100 (i.e., selecting
u(t) = 100000) the simulation time becomes 125 sec-
onds.

Using uniform quantization, in order to get a simi-
lar accuracy, we need to select∆Q = 0.01 in all the
state variables except for the one corresponding tou39,
where the signal is too small and an appropriate value is
∆Q = 0.0001. Although with this choice we get faster
results (about 18 seconds), whenever we increase the in-
put amplitude by a factor of 100, the simulation time also
increases about this factor.

This analysis shows that logarithmic quantization can
be used with any QBI method and it works providing a
selected accuracy irrespective of the signal amplitudes
(which are usually unknown before the simulation is per-
formed).

On the other hand, uniform quantization depends
strongly on the system and its input signals and initial
conditions. In many cases, if we do not know anything
about the system trajectories, it is almost impossible to
select an appropriate uniform quantum.

V Conclusions

We introduced a modifiction to QSS methods, where the
quantum grows and dcreases proportional to the magni-
tude of the corresponding state variable. We showed that
this strategy produces an intrinsic relative error control,
in contrast to the absolute error control associated to the
use of uniform quantization.

The main advantage of the proposed methodology is
that a user can select directly the relative tolerance of a
simulation without a prior knowledge about the system
trajectories. This idea makes QSS methods more robust
and much easier to use, without sacrifying accuracy or

computational efficience.
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