
XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

Linearly Implicit Discrete Event Methods for Stiff ODEs. Part II:
Implementation

Gustavo Migoni† y Ernesto Kofman‡

†Laboratorio de Sistemas Dinámicos FCEIA - UNR - CONICET. Riobamba 245 bis - (2000) Rosario

Abstract— This second part deals with the main
practical issues of the linearly implicit quantization
based integration (QBI) methods defined in the com-
panion paper. The translation of the new algorithms
into a discrete event (DEVS) specification and its im-
plementation in a DEVS simulation tool is discussed.
The efficience of the methods is illustrated comparing
the simulation of two examples with the classic meth-
ods implemented by Matlab/Simulink.

Keywords— Stiff System Simulation, Quantiza-
tion Based Integration, DEVS

I INTRODUCTION

When simulating a continuous system on a digital com-
puter, some quantity must always be discretized. Tra-
ditionally, this has always been the time variable. Al-
most all numerical ODE solvers currently on the market
use approximations of either extrapolation polynomials
(explicit algorithms) or interpolation polynomials (im-
plicit algorithms) relying on past values of states and state
derivatives. Most algorithms operate synchronously, i.e.,
they use a single simulation run-time clock and update all
state variables together [1].

In order to guarantee both accuracy and numerical sta-
bility, most of these algorithms furthermore employ a
step-size control strategy, i.e., a heuristic scheme builton
top of the numerical ODE solver that balances the needs
for efficiency with those of accuracy and stability [1].

Yet, time slicing is not the only way how continu-
ous systems can be discretized. Another approach relies
on state quantization, thereby leaving the time variable
continuous. Methods based on Quantized State Systems
(QSS) belong to this class of algorithms. QSS integra-
tors operate naturally in an asynchronous fashion, i.e.,
each state variable is updated independently of the oth-
ers, and step size control is an intrinsic feature of these
algorithms, i.e., there is no need for a heuristic scheme
to be added to the base algorithm to accomplish step-size
control.

QSS algorithms can be proved to remain numerically
stable (by adjusting the step size), and they offer excellent
accuracy control.

Yet, most QSS algorithms introduced in the past [5,
3, 4] were explicit algorithms. They were therefore not
well suited for the simulation of stiff systems. They re-
mained numerically stable at the expense of utilizing ex-

cruciatingly small step sizes, as any explicit algorithm is
expected to require in this situation.

Recently, a new QSS algorithm of the implicit kind
was developed [6, 8]. The method, called BQSS (after
Backward QSS), was able to efficently integrate many
stiff systems. Yet, whereas the algorithm is implicit, it
still can be implemented without a need for Newton iter-
ation. The reason is that any state can only assume one
of two next values. If a state variable currently assumes
a value ofqj , the next value of that state variable must
be eitherqj + ∆qj , or qj − ∆qj . Hence all possible next
values can beenumeratedwithout an open-ended search.

However, BQSS has some drawbacks: it is only first
order accurate and it introduces an extra perturbation
term that can lead to the appearence of spurious equilib-
rium points.

Both problems were solved with the definition of
LIQSS and LIQSS2 methods in the companion paper
[7]. The first order accurate LIQSS method follows the
idea of BQSS, but avoids the presence of the mentioned
perturbation term using a linearly implicit idea to find
the state values where some derivatives cross by zero.
Then, LIQSS2 combines that idea with the principles of
the QSS2 method, resulting in a second order accurate
method.

In this work we discuss the implementation of the
LIQSS methods as discrete event algorithms in terms
of the DEVS formalism [10], and its programming in a
DEVS simulation software called PowerDEVS [9]. Then,
we introduce some simulation examples and compare the
performance of the new methods with the classic algo-
rithms implemented in Matlab/Simulink.

The paper is organized as follows: Section II recalls
the principles of DEVS and the implementation of QSS
methods as discrete event models. Then, Section III dis-
cuss the main implementation issues of the new LIQSS
methods. Finally, Section IV introduces the simulation
examples and Section V presents conclusions and future
work.

II DEVS and Quantization Methods

This section gives a brief introduction to the DEVS for-
malism and the basic principles of QBI methods.

A Formalismo DEVS

A DEVS model [10] processes an event input trajectory,
and, based on that trajectory and the initial state, produces

XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

an event output trajectory.
The behavior of an atomic DEVS model is formally

defined by the structure:

M = (X, Y, S, δint, δext, λ, ta) (1)

where

• X is input event set, i.e., the set of all possible input
event values.

• Y is the output event set.

• S is the state value set.

• δint, δext, λ andta are the functions that define the
model dynamics.

Each possible states (s ∈ S) has an associated time ad-
vance given by thetime advance function(ta(s) → R

+
0).

ta(s) is a non–negative number indicating how long the
system remains in a given state in absence of input events.

The, if at time t1 the state takes the values1, af-
ter ta(s1) time units (i.e., at timet1 + ta(s1)) the sys-
tem performs an internal transition going to a new state
s2 = δint(s1). Functionδint (δint : S → S) is called
internal transition function.

When the state goes froms1 to s2 an output event is
produced, with valuey1 = λ(s1). Functionλ (λ : S →
Y) is calledoutput function. Functionsta, δint and λ
defined the autonomous behavior of a DEVS model.

When an input event arrives, the state changes instan-
taneously. The new state depends not only on the in-
put event value but also on the previous state and the
elapsed time since the last transition. If the model ar-
rives to states3 at t3 and an input event arrives at time
t3 + e with a valuex1, the new state is calculated as
s4 = δext(s3, e, x1) (notice thate < ta(s3)). In this
case, we say that the system performs an external transi-
tion. Functionδext (δext : S × ℜ+

0 × X → S) is called
external transition function. During an external transition
no output event is produced.

DEVS models can be coupled and the result of the cou-
pling defines an equivalent atomic DEVS model.

B DEVS and QSS

Given an equation of the form

ẋ(t) = f(x(t),u(t)) (2)

with x ∈ ℜn, u ∈ ℜm, the QSS method [5, 7] approxi-
mates it by

ẋ(t) = f(q(t),u(t)) (3)

where the componentsqj andxj are related by hysteretic
quantization functions. Consequently, thequantized vari-
ablesqj(t) follow piecewise constant trajectories.

Each component of Eq.(3) can be thought as the cou-
pling of two elementary subsystems. A static one,

dj(t) = fj(q1, · · · , qn, u1, · · · , um) (4)

and a dynamical one

qj(t) = Qj(xj(·)) = Qj(

∫
dj(τ)dτ) (5)

whereQj is the hysteretic quantization function (it is not
a function of the instantaneous valuexj(t), but a func-
tional of the trajectoryxj(·)).

Since the componentsuj(t) and qj(t) are piecewise
constant, the output of Subsystem (4), i.e.,dj(t), will be
piecewise constant. This way, both subsystem have in-
put and output piecewise constant trajectories that can be
represented by sequences of events.

Then, Subsystems (4) and (5) define a relation between
their input and output sequances of events. Consequently,
equivalent DEVS models can be found for these systems,
calledstatic functionsandquantized integratorsrespec-
tively [5].

The second order accurate QSS2 method can be im-
plemented in the same way of QSS. However, the tra-
jectories are now piecewise linear instead of piecewise
constant. Thus, the events carry two numbers that indi-
cate the initial value and the slope of each segment. Also,
the static functions and quantized integrators are modi-
fied with respect to those of QSS so they can take into
account the slopes.

III LIQSS Implementation

This section discussed the implementation of LIQSS
methods as DEVS models.

A LIQSS Definition

The LIQSS method was defined in the companion paper
[7].

Given a state variablexj(t), LIQSS uses two hysteretic
quantization functions: one from below (q

j
(t) ≤ xj(t))

and the other from above (qj(t) ≥ xj(t)). Both quanti-
zation functions are defined so that they never differ from
xj in more than2∆Qj.

The quantized variableqj is chosen equal to eitherq
j

or qj , according to the direction oḟxj(t). Whenẋj > 0
we useqj = qj , and viceversa.

When ẋj = fj(q,u) depends onqj , it could happen
that the sign of the derivative changes when we evaluate
fj using each possibility, i.e.,fj |q

j
> 0 andfj|qj

< 0.
Thus, we cannot find a correct value forqj .

However, in that situation, continuity infj ensures that
a valueq̂j exists, withq

j
< q̂j < qj , such thatfj |q̂j

= 0.

LIQSS then makesqj = q̃j ≈ q̂j , whereq̃j is calcu-
lated assuming thatfj depends linearly onqj (i.e., LIQSS
is a linearly implicit algorithm).

Formally, given System (2), the LIQSS method ap-
proximates it by Eq.(3), where eachqj is defined by the

XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

following function

qj(t) =

q
j
(t) if fj(q(t),u(t))(qj(t) − xj(t)) ≤ 0

qj(t) if fj(q(t),u(t))(qj(t) − xj(t)) ≥ 0
∧fj(q(t),u(t))(qj(t) − xj(t)) > 0

q̃j(t) otherwise
(6)

with

q
j
(t) =

q
j
(t−) − ∆Qj

if xj(t) − q
j
(t−) ≤ 0

q
j
(t−) + ∆Qj

if xj(t) − q
j
(t−) ≥ 2 · ∆Qj

q
j
(t−) otherwise

(7)

qj(t) = q
j
(t) + 2∆Qj (8)

q̃j(t) =

{
qj(t) −

1
Ajj

· fj(q
j(t),u(t)) if Ajj 6= 0

qj(t
−) otherwise

(9)
whereqj(t) is equal toq(t−) except for thej–th compo-
nent, where it is equal toqj andAj,j is thej, j component
of the Jacobian matrix evaluated inqj , i.e.,

Ajj =
∂fj

∂xj

∣∣∣∣
q

j ,u(t−)

(10)

B DEVS Implementation of LIQSS

The main difference between LIQSS and QSS is the way
in which q is obtained fromx. Eq.(6) says thatqj not
only depends onxj but also onq.

In QSS, the changes inqj are produced whenxj dif-
feres from it in∆Qj. Similarly, in LIQSSqj changes
whenxj reachesqj . However, changes inqj can trigger
changes in other quantized variables because of (6). In
the same way, changes in some component ofuj can also
change some quantized variable.

Following the idea of the DEVS implementation of
QSS, i.e., by the coupling ofquantized integratorsand
static functions, but taking into account the mentioned
differences, we can obtain a DEVS model for the LIQSS
algorithm.

The structure of this implementation is shown in Fig.1.

f1
LIQSS

Integrator

fn
LIQSS

Integrator

d1
u

dn

q1

qn

q

Figure 1: Block Diagram of LIQSS

Since the trajectories ofuj(t) andqj(t) are piecewise
contant, the static funcions are the same than those of
QSS.

Then, we only need to define the LIQSS integrators
so that they calculateqj according to the definition of
LIQSS.

In order to build the DEVS model of the LIQSS quan-
tized integrator, we shall first analyze its behavior.

Let us suppose that in timet the statexj reaches the
value ofqj with a positive slope (̇xj(t

−) > 0). Then, the
upper and lower quantization functionsqj andq

j
must be

updated (increasing by∆Qj). In this situation we first try
with an output valueqj(t) = qj = qj(t

−) + ∆Qj .
If, due to the feedback, we receive an input event with

dj = ẋj(t) < 0, then we are in the situation where we
need to calculate the valuêqj that provokeṡxj = 0, i.e.,
we estimatẽqj using Eq.(9), that in this case takes the
form

q̃j = qj −
1

Ajj

· dj

and we setqj(t) = q̃j (supposing thatAj,j 6= 0, other-
wise we just useqj = qj).

The value ofAj,j can be easily estimated using the
values ofẋj(t

−), ẋj(t), qj(t
−) andqj(t).

It could happen that the integrator then receives (also
at timet) another event with a nonzero value (because of
the error in the calculation of̂qj). In this case we shall
not calculate any further value forqj at timet.

In the opposite case (whenxj reachesqj from above)
we proceed in an analogous way.

The other case in whichqj changes and the quantized
integrator must provoke output events is when a change in
the sign of the derivative is received. Suppose thatxj was
going up towardsqj = qj and at timet (due to the change
in some quantized variable or input), an event withdj =
ẋj(t) < 0 is received.

Then, the integrator must send the new output value
qj(t) = q

j
so thatxj goes towardsqj . In this case, it

can also happen that, due to the feedback, a new event
with ẋj < 0 is received at timet and we are again in
the situation where we need to calculateq̂j . In this case,
we proceed exactly as before, calculatingq̃j and ignoring
any further change of sign at timet.

As before, the case wherexj is initially going down to
qj is completely analogous to the one described above.

In any situation, after calculatingqj , it result easy to
schedule the next output event time. It can be calculated
as:

σj =

(qj(t) − xj(t))/dj if dj > 0
(xj − q

j
(t))/dj if dj < 0

∞ otherwise

The behavior described for the quantized integrator can
be easily translated in a DEVS model. Notice that at each
event time the quantized integrator provoke a maximum
of two output events. This fact, combined with the prop-
erty that ensures thatq changes a finite number of times
proven in Theorem 1 of [7], guarantees the legitimacy
of the DEVS implementation (i.e., the simulation always
perform a finite number of steps in any finite interval of
time).

XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

C Second Order LIQSS

The second order accurate LIQSS2 method defined in the
companion paper [7] is similar to QSS2 but combines it
with the idea of LIQSS. Like QSS2, the quantized vari-
able and the state derivative trajectoriesqj(t) and ẋj(t)
are piecewise linear. Thus, the state trajectoriesxj(t) are
piecewise parabolic.

Like LIQSS, this method uses two quantization func-
tions, one from belowq

j
(t) and the other from above

qj(t), but these functions are piecewise linear instead of
piecewise constant. The quantized variableqj is equal to
one or the other trajectory according to the sign of the
second state derivativëxj so thatxj goes towardsqj .

When the sign of̈xj changes when we start a new seg-
ment ofqj(t), an intermediate slopêmj between the old
and the new slope exists for whicḧxj = 0. Thus, the
LIQSS2 looks form̂j in a linear way. Moreover, the
algorithm also looks for the initial point̂qj that makes
ẋj = m̂j. That way, the quantized variable goes paral-
lel to the state and the fast oscillations that appear in stiff
systems are eliminated.

Formally, given the system (2), the LIQSS2 method
approximates it by (3), where each componentqj is de-
fined as:

qj =

qj(t) if ẍj(t) > 0∨
(ẍj(t) = 0 ∧ ẋj(t) > mj)

q
j
(t) if ẍj(t) < 0∨

(ẍj(t) = 0 ∧ ẋj(t) <= mj)
q̃j(t) otherwise

with

q
j
(t) =

xj(t0) − ∆Qj if t = t0
q

i
(t−) + ∆Qj

if (xj(t) = q
j
(t−) + 2∆Qj

q
i
(t−) − ∆Qj

if (xj(t) = q
j
(t−)

q
j
(tj) + mj · (t − tj) otherwise

qj(t) = q
j
(t) + 2 · ∆Qj

q̃j(t) =

mj(t) − ẍ(t−)
Aj,j

+ qj(t
−)

if Aj,j 6= 0
qj(t

−) otherwise

and

mj =

mj(t
−) if qj(t

−) = qj(t)

ẋj(t
−) if (ẍj(t) · ẍj(t

−) > 0 ∨ Aj,j = 0)

∧qj(t
−) 6= qj(t)

mj(t
−) −

ẍj(t
−)

Aj,j
otherwise

D DEVS Implementation of LIQSS2

The simulation scheme for LIQSS2 is the same than be-
fore (Fig.1), but now the trajectories are piecewise linear
an parabolic.

Since the quantized variable trajectories of LIQSS2
are, as in QSS2, piecewise linear, the static functions are
the same of QSS2.

The main difference between QSS2 and LIQSS2 is the
way in which the quantized state variable trajectories are
calculated in the integrator.

Each segment of the quantized variable trajectory can
be characterized by an initial pointqj and a slopemqj .
In the same way, the state derivative can be characterized
by the pair(dj , mdj). Thus, each input and output event
of the quantized integrator will carry two numbers.

Let us then analyze the behavior of the resulting DEVS
model. Suppose that at timet the statexj reaches ei-
ther qj or q

j
with ẍj(t

−) > 0. Using the fact that

xj is piecewise parabolic, we know botḣxj(t
−) and

ẍj(t
−). Thus, we set the new segments ofqj and q

j

with slopemq = ẋj(t
−) and initial valuesxj + ∆Qj

andxj − ∆Qj respectively. Then, as̈xj(t
−) > 0 we

selectqj(t) = qj(t).
It could happen that, due to the feedback, at timet we

then receive an event with slopemdj(t) = ẍj(t) < 0.
Thus, an intermediate output slopêmqj between the old
and the new one exists that provokes the situationmdj =
ẍj = 0. If Aj,j 6= 0, this slope can be estimated as

m̂qj(t) ≈ m̃qj(t) = mqj(t
−) −

ẍ(t−)

Aj,j

(11)

We also search the valuêqj(t) that makesmdj = ẋj(t) =
m̂qj(t):

q̂j(t) ≈ q̃j(t) =
m̃qj(t) − ẍ(t−)

Aj,j

+ xj(t
−)

Thus, we update the slopes ofq
j

andqj to the valuem̃qj

and we output an event with the pair(q̃j , m̃qj .
Like the case of LIQSS, if we receive another event at

time t we do not produce any further output event.
Another situation in whichqj changes is when an

event with a change in the sign of the second deriva-
tive is received. Suppose thatxj was moving towards
qj with ẍj > 0 and at timet an event is received with
mdj = ẍj < 0 (due to the change is some other quan-
tized or input variable).

Thus, we first try withqj = q
j
(t) and we update the

slopemqj = ẋj(t
−). If, due to feedback, we receive

another event at timet with mdj > 0, we must search for
the valuem̂qj that makesmdj = 0, and we repeat what
we did from Eq.(11).

Onceqj is calculated, we must schedule the next event
time. The time to the next event is given by the first cross-
ing of xj with eitherqj or q

j
. This can be calculated as

the minimum positive solutionσj of the following equa-
tions

xj(t) + uj(t) · σj +
1

2
muj(t)σ

2
j = qj

xj(t) + uj(t) · σj +
1

2
muj(t)σ

2
j = q

j

XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

Similarly to the case of LIQSS,Aj,j can be estimated
as:

Aj,j(t) =
mdj(t

−) − mdj

mqj(t−) − mqj(t)

All these ideas can be easily translated into the DEVS
model of the LIQSS2 quantized integratior.

E PowerDEVS Implementation

PowerDEVS [9] is a software tool for DEVS simulation.
It has a graphical editor that permits build block diagrams
of DEVS models. PowerDEVS libraries contain all the
blocks needed to implement the QSS methods, including
quantized integrators, static functions, source terms and
blocks for discontinuity handling.

The DEVS models corresponding to both LIQSS
methods was added to the generic quantized integrator
that implementes the QSS methods. Now, this block
permits selecting between the following methods: QSS,
QSS2, QSS3, BQSS, CQSS, LIQSS and LIQSS2. This
block also permits selecting the quantum and the initial
state value.

The following section illustrates the usage of these new
methods in PowerDEVS.

IV EXAMPLES

This section aimed to introduce some examples which
shows the performance advantages of the method in the
simulation of non linear and linear stiff systems. The
examples were simulated in PowerDEVS and compared
with Matlab/Simulink results.

A Second Order Linear System

In the first part of this article [7] the following system was
presented:

ẋ1 = 0.01x2

ẋ2 = −100x1 − 100x2 + 2020
(12)

with initial conditionsx1(0) = 0 andx2(0) = 20
The system was first simulated using LIQSS and

LIQSS2 methods with quantum∆Qi = 1. Then, the sim-
ulations were repeated decreasing the quantum 10, 100
and 1000 times. The following table shows the number
of steps performed for each method using the mentioned
quantization:

[h] ∆Qi LIQSS1 LIQSS2
Nox1 Nox2 Total No Nox1 Nox2 Total No

1 21 25 46 8 17 24
0.1 201 203 404 20 39 59
0.01 2006 2026 4032 60 126 186
0.001 20064 28174 48238 186 391 577

This table shows that the number of steps performed by
LIQSS linearly varies with the quantization, while the
number of steps in LIQSS2 grows approximately with the
square root of the quantum reduction.

Figure 2 shows the simulation results using Simulink
ODE15s with tolerance10−3 and PowerDEVS with
∆Qi = 0.001 (the difference between both methods can-
not be appreciated with the naked eye).

The simulation time could not be evaluated under Pow-
erDEVS using∆Qi = 0.001 (it was too small in order

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

\tex{x_2}

t

x
1
sk

,x
1
p
d
,x

2
sl

,x
2
p
d x1

Figure 2: Linear Stiff System Simulation

to be accurately measure). Thus, we compared the simu-
lation times using quantum∆Qi = 0.0001. The simula-
tion in Simulink takes0.078 seconds (ODE15s, in accel-
erated mode, with tolerance10−3), while in PowerDEVS
it takes0.015 seconds.

The global error bound (Equation (23) of [7]) ensures
that the error in the LIQSS2 simulation is always less than
2 · 10−4 in x1 and6 · 10−4 in x2.

Figure (3) shows the simulation error in PowerDEVS
with quanta∆Qi = 0.0001. Comaring it with the theo-
retical bound, we see that the last one is a bit conservative.

0 50 100 150 200 250 300 350 400 450 500
−0.02

−0.015
−0.01

−0.005
0

0.005
0.01

0.015

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

X
1
er

r

t

t

X
2
er

r

Figure 3: Error

B Van der Pol Oscillator

The problem consists of a second order differential equa-
tion proposed by B. van der Pol in the 1920’s, that de-
scribes the behavior of nonlinear vacuum tube circuits. It
has two periodic solutions, the constant solution,z(t) =
0, which is unstable, and a nontrivial periodic solution
that correspond to an attractive limit cycle. The equa-
tion depends on a parameter that weights the importance
of the nonlinear part of the equation. The corresponding
state equations are:

ẋ1(t) = x2
ẋ2(t) = (1 − x2

1) · µ − x1
(13)

XII Reuníon de Trabajo en Procesamiento de la Información y Control, 16 al 18 de octubre de 2007

We fixed the parameterµ = 1000, what gives rise to a
stiff problem that is often used as a test problem for stiff
ODEs solvers [2].

The model was then built in PowerDEVS (Fig.4)

Figure 4: PowerDEVS model of the Van der Pol oscilla-
tor

For the simulation, we used initial conditionsx1(0) =
2, x2(0) = 0 and quantization∆Q1 = 0.001, ∆Q2 = 1.
We simulate the system with LIQSS2 untiltf = 4000.
The results are shown in Figure 5. The total number of
steps was 2159 (838 inx1 and1321 in x2). The simula-
tion takes0.031 seconds.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−3

−2

−1

0

1

2

3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1500

−1000

−500

0

500

1000

1500

x
1
P

D
,x

1
s

t

t

Figure 5: Van der Pol oscillator simulation

The same system was simulated using different Mat-
lab/Simulink methods. The best results were obtained
with ODE15s. In order to obtain similar results to the
ones given by PowerDEVS the tolerance error must be set
to 10−14. Using larger tolerances the results were quali-
tatively similar but with a significant phase error. In this
case, the number of steps was 2697 and the simulation
takes0.056 seconds.

It must be taken into account as we compare the results,
that the order of LIQSS2 is smaller that the one of ode15s.

Finally, the system was simulated again using LIQSS2
but with quanta∆Q1 = 0.0001 and∆Q2 = 0.1 (ten
times smaller). The number of steps performed result
4148(1975 inx1 and2173 in x2) and the simulation takes
0.047 seconds. Comparing this result whit the previous

one, it can be seen that the number of steps was increased
just in a factor of 2 while the quantized levels were re-
duced in a factor of ten. This put in evidence the second
order nature of the LIQS2 method

V CONCLUSIONS

We presented two novel QBI methods that are able to in-
tegrate stiff systems based on linearly implicit principles.
The fact that the methods do not call for iterations per-
mit achieving and important reduction of computational
costs when compared with traditional implicit discrete
time methods.

Future work must be done in order to develop higher
order methods (following the idea of QSS3 for instance).
It is also important to establish which kind of stiff system
can be simulated with LIQSS methods.

References

[1] F.E. Cellier and E. Kofman. Continuous System
Simulation. Springer, New York, 2006.

[2] W. H. Enright and J. D. Pryce. Two (fortran) pack-
ages for assessing initial value methods.(ACM)
Transactions on Mathematical Software, 13(1):1–
27, 1987.

[3] E. Kofman. A Second Order Approximation for
DEVS Simulation of Continuous Systems.Simu-
lation, 78(2):76–89, 2002.

[4] E. Kofman. A Third Order Discrete Event Simu-
lation Method for Continuous System Simulation.
Latin American Applied Research, 36(2):101–108,
2006.

[5] E. Kofman and S. Junco. Quantized State Systems.
A DEVS Approach for Continuous System Simula-
tion. Transactions of SCS, 18(3):123–132, 2001.

[6] E. Kofman, G. Migoni, and F.E. Cellier. Integración
por Cuantificación de Sistemas Stiff. Parte I: Teorı́a.
In Proceedings of AADECA 2006, Buenos Aires,
Argentina, 2006.

[7] G. Migoni and E. Kofman. Linearly Implicit Dis-
crete Event Methods for Stiff ODEs. Part I: Theory.
Technical Report LSD0107, LSD–UNR, 2007. En-
viado a RPIC 2007.

[8] G. Migoni, E. Kofman, and F.E. Cellier. Integración
por Cuantificación de Sistemas Stiff. Parte II: Apli-
caciones. InProceedings of AADECA 2006, Buenos
Aires, Argentina, 2006.

[9] Esteban Pagliero, Marcelo Lapadula, and Ernesto
Kofman. PowerDEVS. Una Herramienta Integrada
de Simulación por Eventos Discretos. InProceed-
ings of RPIC’03, volume 1, pages 316–321, San
Nicolas, Argentina, 2003.

[10] B. Zeigler, T.G. Kim, and H. Praehofer.Theory
of Modeling and Simulation. Second edition. Aca-
demic Press, New York, 2000.

