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Abstract— This second part deals with the main cruciatingly small step sizes, as any explicit algorithm is
practical issues of the linearly implicit quantization expected to require in this situation.
based integration (QBI) methods defined in the com- Recently, a new QSS algorithm of the implicit kind
panion paper. The translation of the new algorithms was developed [6, 8]. The method, called BQSS (after
into a discrete event (DEVS) specification and its im- Backward QSS), was able to efficently integrate many
plementation in a DEVS simulation tool is discussed. stiff systems. Yet, whereas the algorithm is implicit, it
The efficience of the methods is illustrated comparing still can be implemented without a need for Newton iter-
the simulation of two examples with the classic meth- ation. The reason is that any state can only assume one
ods implemented by Matlab/Simulink. of two next values. If a state variable currently assumes
a value ofg;, the next value of that state variable must
be eitherg; + Ag;, org; — Ag;. Hence all possible next
values can benumeratedvithout an open-ended search.
| INTRODUCTION However, BQSS has some drawbacks: it is only first

order accurate and it introduces an extra perturbation

When simulating a continuous system on a digital COMygm, that can lead to the appearence of spurious equilib-
puter, some quantity must always be discretized. Trgj,m points.

ditionally, this has always been the time variable. Al- pguip problems were solved with the definition of
most all numerical ODE solvers currently on the markeﬂQSS and LIQSS2 methods in the companion paper
use approximations of either extrapolation ponnomiaIﬁ]_ The first order accurate LIQSS method follows the
(explicit algorithms) or interpolation polynomials (im- jqea of BQSS, but avoids the presence of the mentioned
plicit algorithms) relying on past values of states andstal, ey rhation term using a linearly implicit idea to find
derivatives. Most algorithms operate synchronously, i-ehe state values where some derivatives cross by zero.
they use a single simulation run-time clock and update ai‘lhen, LIQSS2 combines that idea with the principles of

state variables together [1]. _ the QSS2 method, resulting in a second order accurate
In order to guarantee both accuracy and numerical Stgsethod.

bility, most of these algorithms furthermore employ a | this work we discuss the implementation of the
step-size controllstrategy, i.e., a heuristic scheme bumilt LIQSS methods as discrete event algorithms in terms
top of_the num_erlcal ODE solver that balance_s_ the needs the DEVS formalism [10], and its programming in a
for efficiency with those of accuracy and stability [1].  pgys simulation software called PowerDEVS [9]. Then,
Yet, time slicing is not the only way how continu- e introduce some simulation examples and compare the

ous systems can be discretized. Another approach re"ﬁérformance of the new methods with the classic algo-
on state quantization, thereby leaving the time variablgi,ms implemented in Matlab/Simulink.

continuous. Methods based on Quantized State Systemsrhe paper is organized as follows: Section Il recalls
(QSS) belong to this class of algorithms. QSS integrane principles of DEVS and the implementation of QSS
tors operate naturally in an asynchronous fashion, i.6nethods as discrete event models. Then, Section Il dis-
each state variable is updated independently of the otR;ss the main implementation issues of the new LIQSS
ers, and step size control is an intrinsic feature of thesgethods. Finally, Section 1V introduces the simulation

algorithms, i.e, there is no need for a heuristic schemg amples and Section V presents conclusions and future
to be added to the base algorithm to accomplish step-sigg, i

control.

QSS algorithms can be proved to remain numerically Il DEVS and Quantization Methods
stable (by adjusting the step size), and they offer excellemhijs section gives a brief introduction to the DEVS for-
accuracy control. malism and the basic principles of QBI methods.

Yet, most QSS algorithms introduced in the past [5, )
3, 4] were explicit algorithms. They were therefore nof* Formalismo DEVS
well suited for the simulation of stiff systems. They re-A DEVS model [10] processes an event input trajectory,
mained numerically stable at the expense of utilizing exand, based on that trajectory and the initial state, progluce

K eywords— Stiff System Simulation, Quantiza-
tion Based Integration, DEVS
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an event output trajectory. and a dynamical one

The behavior of an atomic DEVS model is formally
defined by the structure:

50 = Q) = & [ 4rdn)  ®)

M = (Xa Ya Sa 5int7 5ext7 )\; ta) (1)

where whereQ); is the hysteretic quantization function (it is not
a function of the instantaneous valug(t), but a func-
e Xisinputeventset, i.e., the set of all possible inputional of the trajectoryt; (-)).

event values. Since the components; (¢) and ¢;(t) are piecewise

constant, the output of Subsystem (4), i (t), will be

piecewise constant. This way, both subsystem have in-

e S is the state value set. put and output piecewise constant trajectories that can be
represented by sequences of events.

® dint, dext, A @ndta are the functions that define the o sypsystems (4) and (5) define a relation between
model dynamics. their input and output sequances of events. Consequently,

Each possible state(s € S) has an associated time ad_equivalent. DEVS .models can b_e fou.nd for these systems,
vance given by théme advance functiofta(s) — RJ qalled static functionsand quantized integratorsespec-
ta(s) is a non-negative number indicating how long thé'Ve!y [3]-
system remains in a given state in absence of input events.The second order accurate QSS2 method can be im-
The, if at timet; the state takes the valug, af- plemented in the same way of QSS. However, the tra-
ter ta(s1) time units (i.e., at time; + ta(s;)) the sys- jectories are now piecewise linear instead of piecewise
tem performs an internal transition going to a new stateonstant. Thus, the events carry two numbers that indi-
59 = Gine(s1). Functiondiy: (dine : S — S) is called cate the initial value and the slope of each segment. Also,
internal transition function the static functions and quantized integrators are modi-
When the state goes from to s, an output event is fied with respect to those of QSS so they can take into
produced, with valug; = A(s;). Function\ (A : S —  accountthe slopes.
Y) is calledoutput function Functionsta, &, and A
defined the autonomous behavior of a DEVS model. Il LIQSS Implementation
When an input event arrives, the state changes instan-
taneously. The new state depends not only on the irFhis section discussed the implementation of LIQSS
put event value but also on the previous state and thgethods as DEVS models.
elapsed time since the last transition. If the model ar-
rives to statess att; and an input event arrives at time A LIQSS Definition
t3 + e with a valuez, the new state is calculated as
54 = Jext(83,€,21) (notice thate < ta(s3)). Inthis The LIQSS method was defined in the companion paper
case, we say that the system performs an external tran§f}-
tion. FUnctiondex (Jext : S x B x X — S) is called Given a state variable; (), LIQSS uses two hysteretic
external transition functionDuring an external transition quantization functions: one from belO\gj(t) < z;(t))

no outputeventis produced. and the other from abov@((t) > z;(t)). Both quanti-
DEVS models can be coupled and the result of the coyxion functions are defined so that they never differ from

e Y is the output event set.

pling defines an equivalent atomic DEVS model. z; in more tharAQ;.
B DEVSand QSS The quantized variablg; is chosen equal to eithgg,
Given an equation of the form or g;, according to the direction af;(t). Wheni; > 0
we useg; = q;, and viceversa.
x(t) = f(x(t), u(?)) (2) Wheni; = f;(q,u) depends oy, it could happen

that the sign of the derivative changes when we evaluate
f; using each possibility, i.ef;|, > 0andf;lz < 0.
=7
. Thus, we cannot find a correct value fgt
%(t) = £(a(t). u() ® nnotfind a correct value g
However, in that situation, continuity ify ensures that

where the componenis andz; are related by hysteretic 3 valuej; exists, withg, < ¢; < q;, such thatf; |5, = 0.
guantization functions. Consequently, theantized vari- -

ablesg, (t) follow piecewise constant trajectories.
Each component of Eq.(3) can be thought as the co
pling of two elementary subsystems. A static one,

with x € 1™, u € R, the QSS method [5, 7] approxi-
mates it by

LIQSS then makes; = ¢; ~ §;, whereg; is calcu-
b’:}ted assuming thgt depends linearly og; (i.e., LIQSS
is a linearly implicit algorithm).

Formally, given System (2), the LIQSS method ap-
d;i(t) = filq, - ,qn, U1, , Um) (4) proximates it by Eq.(3), where eaghis defined by the
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following function Then, we only need to define the LIQSS integrators
_ _ so that they calculate; according to the definition of
a;() if fi(a(), u(®)(g;(t) —=;(1)) <0 | gss.
¢;(t) = g;(t) it f3(a(?), u(t))(g;(t) — ;(t)) 2 0 In order to build the DEVS model of the LIQSS quan-
! Afila(t), u(t))(g;(t) — x;(t)) > 0 tized integrator, we shall first analyze its behavior.
q;(t) otherwise Let us suppose that in timethe stater; reaches the
(6)  value ofg; with a positive slope;(t~) > 0). Then, the
with upper and lower quantization functiogsandg ; must be
q.(t7) — AQ; updated (increasing b%@;). In this situation we first try
if 2;(t) — g () <0 with an output valug, (t) = g; = qj_(t ) +.AQJ». _
N =J If, due to the feedback, we receive an input event with
Qj(t) = gj(bf )+ AQ; (7 d; = &;(t) < 0, then we are in the situation where we
if 2;(t) —g,(t7) 2 2- AQ; need to calculate the valie that provokes:; = 0, i.e.,
gj(t—) otherwise we estimatej; using Eq.(9), that in this case takes the
form )

23
Tt = { q,(t) — AL“ i@ (t),u(t)) if Aj; #£0 and we set;(t) = g, (supposing thatl; ; # 0, other-
4 q;(t7) otherwise wise we just usg; = q;).
9) The value of4; ; can be easily estimated using the
whereq’ (¢) is equal tog(¢~) except for thej—th compo-  values ofi; (¢~ ), @;(t), ¢;(t~) andg; (t).
nent, where itis equal @ andA; ; is thej, j component It could happen that the integrator then receives (also

of the Jacobian matrix evaluateddp, i.e., at timet) another event with a nonzero value (because of
the error in the calculation af;). In this case we shall
Ajj = of; (10) notcalculate any further value foy at timet.
O | e In the opposite case (whern reachesy; from above)

_ we proceed in an analogous way.

B DEVS Implementation of LIQSS The other case in which; changes and the quantized
The main difference between LIQSS and QSS is the waytegrator must provoke output events is when a change in
in which q is obtained fromx. Eq.(6) says thag; not the sign of the derivative is received. Suppose thatas
only depends or; but also om. going up towardg; = g; and at time (due to the change

In QSS, the changes iy are produced when; dif-  in some quantized variable or input), an event wifh=
feres from it inAQ;. Similarly, in LIQSSgq; changes i;(¢) < 0is received.
whenz; reaches;;. However, changes ig; can trigger Then, the integrator must send the new output value
changes in other quantized variables because of (6). #i(t) = ¢. so thatz; goes towards;. In this case, it
the same way, changes in some component@an also can also happen that, due to the feedback, a new event
change some quantized variable. with ; < 0 is received at time and we are again in

Following the idea of the DEVS implementation ofthe sjtuation where we need to calculge In this case,

QSS, i.e., by the coupling afuantized integratorand e proceed exactly as before, calculatipgnd ignoring
static functions but taking into account the mentionedany further change of sign at tinte

differences, we can obtain a DEVS model for the LIQSS As before, the case Wheﬂg is |n|t|a||y going down to

algorithm. o o g is completely analogous to the one described above.
The structure of this implementationis shownin Fig.1. " |n any situation, after calculating;, it result easy to

schedule the next output event time. It can be calculated

u ’fT dy LIQSS |¢1 as. .
> Integrator (@;(t) —z;@t))/d; ifd;>0
oj = (l‘j—gj(t )/dJ if dj<0
00 otherwise

£ |n LIQSS  |dn
q n Integrator

vy

The behavior described for the quantized integrator can
be easily translated in a DEVS model. Notice that at each
event time the quantized integrator provoke a maximum
of two output events. This fact, combined with the prop-

Figure 1: Block Diagram of LIQSS erty that ensures that changes a finite number of times
proven in Theorem 1 of [7], guarantees the legitimacy

Since the trajectories af;(t) andg;(t) are piecewise of the DEVS implementation (i.e., the simulation always
contant, the static funcions are the same than those pérform a finite number of steps in any finite interval of
QSsS. time).
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C Second Order LIQSS Since the quantized variable trajectories of LIQSS2

The second order accurate LIQSS2 method defined in tR€: @S in QSS2, piecewise linear, the static functions are

companion paper [7] is similar to QSS2 but combines {the Same of QSS2. _
with the idea of LIQSS. Like QSS2, the quantized vari- 1ne main difference between QSS2 and LIQSS2 is the

able and the state derivative trajectorigét) and i () way in whigh the .quantized state variable trajectories are
are piecewise linear. Thus, the state trajectorigs) are ~calculated in the integrator. . .
piecewise parabolic. Each segment of the quantized variable trajectory can

Like LIQSS, this method uses two quantization funcP® characterized by an initial poinf and a slopeng;.
tions, one from below; (¢) and the other from above In the same way, the state derivative can be characterized
=

q,(t), but these functions are piecewise linear instead cE)’f%’tthh: pf;rrszﬁ ’egulir]] t)e -I;zgosr'V(\a/i"ﬁccha'rr;pl:\f\;nndu?nugggst event
piecewise constant. The quantized variaplés equal to Let L?S then anal zg the behavior):)f the resultin .DEVS
one or the other trajectory according to the sign of the y 9

second state derivativig so thatr; goes towards;. tthdEI' Supposi t.hat ?t tintethe ata_terj l:eafchesf}e -
When the sign of ; changes when we start a new seg- er 9 .or 4 _Wlt #(t >_ > 0. Using the fact that
ment ofg; (t), an intermediate slopé;, between the old % 1S piecewise parabolic, we know both(¢~) and
and the new slope exists for whigh = 0. Thus, the #;(t7). Thus, we set the new segmentsgfandg,
LIQSS2 looks form; in a linear way. Moreover, the with slopem, = i;(t~) and initial valuesz; + AQ;
algorithm also looks for the initial poinj; that makes andz; — AQ; respectively. Then, ag;(t~) > 0 we
i; = ;. That way, the quantized variable goes paralselecty; () = g, (t).
lel to the state and the fast oscillations that appear ifh stif It could happen that, due to the feedback, at tinmes
systems are eliminated. then receive an event with sloped; (t) = &;(t) < 0.
Formally, given the system (2), the LIQSS2 method hus, an intermediate output slope;; between the old

approximates it by (3), where each compongnis de- and the new one exists that provokes the situatioly =

fined as: Z; =0.1f A; ; # 0, this slope can be estimated as
g:(t) if&;(t) >0v B St
TG =08 d () > my) 1hg;(t) ~ mg;(t) = mq;(t™) — ;(1, ,}) (11)
g =1 a,(t) ifi()<ov !
(&;(t) =0AZ;(t) <=my) We also search the valge(t) that makesnd; = &;(t) =
g;(t) otherwise g, (t):
wih i) ~ g0 = ") e
iV
zj(to) —AQ; ift =t Thus, we update the slopesgfandg; to the valueig;
4,(t7) + AQ; and we out ith t i, mq;
: B put an event with the p&df;, mg;.
o) = 'fi(‘T/J' () = q,(t7) +2A0Q; Like the case of LIQSS, if we receive another event at
4 q,(t7) — AQ; time ¢ we do not produce any further output event.
if (2 () = q,(t7) Another situation in whichy; changes is when an
q.(t;) +m;j - (t —t;) otherwise event with a change in the sign of the second deriva-
_ tive is received. Suppose that was moving towards
7(t) = ¢;(t)+2- A0, qj with &; > 0 and at timet an; event is received with
m;(t) — &(t7) _ md; = &; < 0 (due to the change is some other quan-
A; +a;(t7) tized or input variable)
Gt = A b firet try wi
if Aj; #0 Thus, we first try withy; = ¢ (t) and we update the
g;(t”) otherwise slopemg; = i;(t~). If, due to feedback, we receive
and another event at timewith md; > 0, we must search for
the valuerng; that makesnd; = 0, and we repeat what
m;(t™) if q;(t7) = ¢;(?) we did from Eq.(11).
@i (t7)if (2(¢) - @5(t7) >0V Aj; =0) Onceyg; is calculated, we must schedule the next event
mj = NG (E7) # ¢;() _time. The ti_me tp the next event_is given by the first cross-
(6 _ ing of z; with eitherg; or q;- This can be calculated as
m;(t7) — qu otherwise the minimum positive solution; of the following equa-
tions
D DEVS Implementation of LIQSS2 1
The simulation scheme for LIQSS2 is the same than be- ;i (t) +u;(t) - 05 + imuj(t)%z = g
fore (Fig.1), but now the trajectories are piecewise linear 1
an parabolic. x;(t) +u;(t) o + imuj(t)%z = g
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Similarly to the case of LIQSS4; ; can be estimated 2

as:
I

md;(t™) —md,;
Aji(t) = ,](— )_ ~
ma;(t~) — mg;(t)
All these ideas can be easily translated into the DEVS
model of the LIQSS2 quantized integratior.

n
=]

=
3
T

E PowerDEVS Implementation

PowerDEVS [9] is a software tool for DEVS simulation.
It has a graphical editor that permits build block diagrams
of DEVS models. PowerDEVS libraries contain all the
blocks needed to implement the QSS methods, including

x18k, x1pd, xosl, xopd

4
T

\tex{$x_2%}

0 50 100 150 200 250 300 350 400 450 500

quantized integrators, static functions, source terms and n
blocks for discontinuity handling.
The DEVS models corresponding to both LIQSS Figure 2: Linear Stiff System Simulation

methods was added to the generic quantized integrator

that implementes the QSS methods. Now, this block

permits selecting between the following methods: QS3p be accurately measure). Thus, we compared the simu-
QSS2, QSS3, BQSS, CQSS, LIQSS and LIQSS2. Thiation times using quantut@; = 0.0001. The simula-
block also permits selecting the quantum and the initiglon in Simulink take$).078 seconds (ODE15s, in accel-

state value. erated mode, with tolerand®—?), while in PowerDEVS
The following section illustrates the usage of these neit takes0.015 seconds.
methods in PowerDEVS. The global error bound (Equation (23) of [7]) ensures

that the errorin the LIQSS2 simulation is always less than
IV EXAMPLES 210~ in 21 and6 - 10~ in z».

This section aimed to introduce some examples which Figure (3) shows the simulation error in PowerDEVS

shows the performance advantages of the method in théth quantaAQ; = 0.0001. Comaring it with the theo-

simulation of non linear and linear stiff systems. Theetical bound, we see that the last one is a bit conservative.

examples were simulated in PowerDEVS and compared

with Matlab/Simulink results. O'OBWWNW\N\MWW\{WWWNWW
0.01
A Second Order Linear System %010037 {
In the first part of this article [7] the following systemwas  32°%c:| ]
presented: ooy
70'020 50 100 150 200 t250 300 350 400 450 500
5.61 = 00112
iy = —100z; — 100z + 2020 (12) oo
0.008 g
WY W W
with initial conditionsz; (0) = 0 andz»(0) = 20 Sooos 1
The system was first simulated using LIQSS and ,c0004r
LIQSS2 methods with quantuth@; = 1. Then, the sim- 0.002)

ulations were repeated decreasing the quantum 10, 100 o
and 1000 times. The following table shows the number
of steps performed for each method using the mentioned

50 100 150 200t250 300 350 400 450 500

uantization: i
a Figure 3: Error
[ AQ; LIQSS1 LIQSS2
Nz N°z5 TotalN° | N°x; N°z5 | TotalN®
1 21 25 46 8 17 24 .
0.1 201 203 404 20 39 59 B Van der Pol Oscillator
0.01 2006 2026 4032 60 126 186 . . .
0.001 20064 | 28174 | as23s | 186 | 301 577 The problem consists of a second order differential equa-

tion proposed by B. van der Pol in the 1920’s, that de-

This table shows that the number of steps performed hy.ripes the behavior of nonlinear vacuum tube circuits. It
LIQSS linearly varies with the quanUzaFlon, Wh||(_e thenas two periodic solutions, the constant solutioft) =
number of steps in LIQSS2 grows approximately with thg) '\yhich is unstable, and a nontrivial periodic solution

square root of the quantum reduction. , ~ that correspond to an attractive limit cycle. The equa-
Figure 2 shows the simulation results using Simulinkis, gepends on a parameter that weights the importance

. . ) ( _ _
ODE15s with tolerancel0™ and PowerDEVS with ot the nonlinear part of the equation. The corresponding
AQ; = 0.001 (the difference between both methods cang;te equations are:

not be appreciated with the naked eye).
The simulation time could not be evaluated under Pow- i (t) = a2

erDEVS usingA@; = 0.001 (it was too small in order in(t) =1 —a?) p—x (13)
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We fixed the parametgr = 1000, what gives rise to a one, it can be seen that the number of steps was increased

stiff problem that is often used as a test problem for stiffust in a factor of 2 while the quantized levels were re-

ODEs solvers [2]. duced in a factor of ten. This put in evidence the second
The model was then built in PowerDEVS (Fig.4) order nature of the LIQS2 method

V CONCLUSIONS

. vdpstiff_back We presented two novel QBI methods that are able to in-
e 5 vew Eomat Smujston Hep tegrate stiff systems based on linearly implicit principle
The fact that the methods do not call for iterations per-
mit achieving and important reduction of computational
costs when compared with traditional implicit discrete
NLFunctiont time methods.

_‘HD - Future work must be done in order to develop higher
order methods (following the idea of QSS3 for instance).

DEEH fBERD 2 _DH @0 @

|»

i)

Whuml 10552 Liass2

i irtegato Itis also important to establish which kind of stiff system
DE can be simulated with LIQSS methods.
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