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Abstract— This paper introduces two new nu-
merical methods for integration of stiff ordinary dif-
ferential equations. Following the idea of quantization
based integration, i.e., replacing the time discretiza-
tion by state quantization, the new methods perform
first and second order backward approximations al-
lowing to simulate stiff systems. It is shown that the
new algorithms satisfy the same theoretical proper-
ties of the previous methods. A companion paper with
applications illustrate the practical advantages of the
methodology.
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I INTRODUCTION

The use of traditional methods [2, 3, 1] based on time
discretization to integrate stiff systems require the use of
implicit algorithms since the required step size used by
explicit methods is limited by the stability region and the
resulting step size becomes inadmissibly small [1].

In fact, numerical integration methods that include in
their numerically stable region the entire left half (λ · h)
plane (or at least a large portion of it) are necessary [1].
Only some implicit methods have this type of stability
region. Explicit algorithms showing that feature do not
exist.

The problem with implicit methods is that they are
computationally expensive because in each step they need
to use iterative algorithms to determine the next value
(usually with the Newton Iteration). The problem be-
comes critical in applications related to real time simula-
tion, where in many cases performing iterations becomes
unacceptable.

An alternative approach to classic time slicing started
to develop since the end of the 90’s, where time dis-
cretization is replaced by state variables quantization. As
a result, the simulation models are not discrete time but
discrete event systems. The origin of this idea can be
found in the definition of Quantized Systems [12, 11].

This idea was then reformulated with the addition
of hysteresis –to avoid the appearance of infinitely fast
oscillations– and formalized as the Quantized State Sys-
tems (QSS) method for ODE integration in [7]. This
was followed by the definition of the second order QSS2
method [4], the third order QSS3 method [6].

The QSS–methods showed some important advantages
with respect to classic discrete time methods in the inte-

gration of discontinuous ODEs [5], sparsity exploitation
[4], the property of absolute stability, and the existence of
a global error bound [1].

In spite of these properties, QSS, QSS2 and QSS3 fail
when applied to stiff systems due to the appearence of fast
oscillations. To solve this problem, a first order backward
QSS method (called BQSS) was proposed in [8, 10]. The
basic idea of the BQSS method is to use afuture value
of the states to obtain the quantized value. Since the fu-
ture quantized magnitude can only take two values (one
from below and one from above the current quantized
variable), BQSS method results does not call for itera-
tions. In other words BQSS was the first explicit method
for stiff ODEs.

The main drawback of BQSS is that it performs only
a first order approximation and accurate results cannot
be obtained. Another problem is that BQSS introduced
an extra perturbation term that increases the error bound
and, in some nonlinear systems, might provoke the ap-
peareance of spurious equilibrium points.

This paper presents first a new method that combines
the idea of BQSS and linearly implicit integration. The
new method, called LIQSS (after Linearly Implicit QSS),
solves the problem of the extra perturbation term and the
appearence of spurious equilibrium points.

Then, combining the idea of LIQSS with QSS2, we
obtained a second order accurate method called LIQSS2.
This new method solves, up to certain limits, the problem
of accuracy.

The work is organized in the following way: Section II
recalls the principles of Quantization–Based Integration
and introduces the problems of QSS methods to deal with
stiff systems. Then, Section III introduces the new meth-
ods, namely, LIQSS and LIQSS2. Section IV studies
the properties of the new methods (legitimacy and error
bound) and finally, Section V presents some conclusions.

Implementation issues and application examples are
presented in the companion paper [9].

II QUANTIZATION-BASED INTEGRATION

This section introduces the principles of QSS methods
and shows the problems they have in the simulation of
stiff systems

A QSS Method

Consider a time invariant ODE in its State Equation Sys-
tem (SES) representation:

ẋ = f(x(t),u(t)) (1)
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wherex(t) ∈ R
n is the state vector andu(t) ∈ R

m is an
input vector, which is a known piecewise constant func-
tion.

The QSS-method simulates an approximate system,
which is called Quantized State System:

ẋ(t) = f(q(t),u(t)) (2)

whereq(t) is a vector of quantized variables which are
quantized versions of the state variablesx(t). Each com-
ponent ofq(t) follows a piecewise constant trajectory,
related with the corresponding component ofx(t) by a
hysteric quantization function so that:

qj(t) =

{
xj(t) if |qj(t

−) − xj(t)| = ∆Qj

qj(t
−) otherwise

(3)

and qj(t0) = xj(t0). Thus, qj(t) only changes when
it differs from xj(t) in ±∆Qj. The magnitude∆Qj is
called quantum.

Using the fact thatq(t) is piecewise constant and pro-
vided that the inputu(t) is piecewise constant, it can be
seen thatx(t) is piecewise linear [7]. Consequently, the
integration of Eq.(2) is straightforward. Moreover, the
system is equivalent to a discrete event model in terms
of the DEVS formalism [11]. A summarized explanation
the DEVS formalism can be found in [9].

B QSS and Stiff Systems

The system

ẋ1(t) = 0.01 x2(t)

ẋ2(t) = −100 x1(t) − 100 x2(t) + 2020
(4)

has eigenvaluesλ1 ≈ −0.01 andλ2 ≈ −99.99 which
mens that the system is stiff.

The QSS method approximates this system as

ẋ1(t) = 0.01 q2(t)

ẋ2(t) = −100 q1(t) − 100 q2(t) + 2020
(5)

Considering initial conditionsx1(0) = 0, x2(0) = 20,
and quanta∆Q1 = ∆Q2 = 1, the QSS integration per-
forms the following steps:

In t = 0 we setq1(0) = 0 andq2(0) = 20. Then,
ẋ1(0) = 0.2 and ẋ2(0) = 20. This situation remains
until |qi − xi| = ∆Qi = 1.

The next change inq1 is then scheduled att = 1/0.2 =
5 while the change inq2 is scheduled att = 1/20 = 0.05.

Thus, a new step is performed int = 0.05. After this
step it resultsq1(0.05) = 0, q2(0.05) = 21, x1(0.05) =
0.01, x2(0.05) = 21. The derivatives arėx1(0.05) =
0.21 andẋ2(0.05) = −80.

The next change inq1 is rescheduled at0.05 + (1 −
0.01)/0.21 = 4.764 while the next change inq2 is sched-
uled at0.05 + 1/80 = 0.0625. Hence, the next step is
performed att = 0.0625.

In t = 0.0625 it resultsq1(0.0625) = 0, q2(0.0625) =
x2(0.0625) = 20, x1(0.0625) ≈ 0.0126 and the deriva-
tives coincide with those oft = 0.

This is cyclically repeated until a change inq1 occurs.
That change occurs att ≈ 4.95, after 158 changes inq2

(which oscillates between 20 and 21).
The simulation continues in the same way. Fig.1 shows

the evolution ofq1(t) andq2(t) through500 units of sim-
ulated time.
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Figure 1: QSS Simulation

The fast oscillations ofq2 provoke a total of 15995
transitions in that variable, whileq1 only changes 21
times. Consequently, the total number of steps to com-
plete the simulation is greater than 16000 (this number is
of the order of the 25000 steps needed by Forward Euler
method to obtain a stable result).

Evidently, the QSS method is unable to efficiently in-
tegrate System (4).

C QSS2 Method

The second order QBI method uses first order quantiza-
tion. As it is shown in Figure 2, a first order quantizer
produces a piecewise linear output trajectory. Each sec-
tion of that trajectory starts with the value and slope of the
input and finishes when it differs from the input in∆Qi.
A formal definition of a first order quantization function
can be found in [4].

First Order Quantizer

∆Q

Input
Output

Figure 2: Trajectories of a first–order quantizer.

The QSS2 method then approximates a system like (1)
by (2) but now, the quantized variablesqi(t) follow piece-
wise linear trajectories and the state variablesxi(t) are
piecewise parabolic functions of the time.
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Like the first order QSS, QSS2 can be represented by
a DEVS model. The advantage of QSS2 is that it per-
mits using a small quantum –i.e., setting a small error
tolerance–without increasing considerably the number of
calculations. In QSS, the number of steps is inversely
proportional with the quantum, while in QSS2 it is only
inversely proportional with its square root.

QSS2 also exhibits the problem of fast oscillations in
the simulation of stiff systems. For instance, if we use the
QSS2 method to simulate System (4), it performs 65467
steps (19 changes inq1 and 65448 changes inq2).

D BQSS Method

The BQSS method is similar to QSS, butqi is always
chosen so thatxi(t) goes toqi(t).

Basically, given a state variablexj(t), BQSS uses
two hysteretic quantization functions: one from below
(q

j
(t) ≤ xj(t)) and the other from above (qj(t) ≥ xj(t)).

Both quantization functions are defined so that they never
differ from xj in more than2∆Qj.

The quantized variableqj is chosen equal to eitherq
j

or qj , according to the direction oḟxj(t). Whenẋj > 0
we useqj = qj , and viceversa.

When ẋj = fj(q,u) depends onqj , it could happen
that the sign of the derivative changes when we evaluate
fj using each possibility, i.e.,fj |q

j
> 0 andfj |qj

< 0.
Thus, we cannot find a correct value forqj .

However, in that situation, continuity infj ensures that
a valueq̂j exists, withq

j
< q̂j < qj , such thatfj |q̂j

= 0.

Thus, the BQSS method sets eitherqj = qj or qj =
q

j
and enforces the derivativėxj = 0 adding an extra

perturbation term∆fj = fj |qj
.

Then, given the system Eq.(1), instead of simulating a
system like Eq.(2), BQSS simulates a system of the form:

ẋ(t) = f(q(t),u(t)) + ∆f(t) (6)

where∆(t) is normally zero, except when the situation
described above is found (i.e., when we cannot find a cor-
rect value forqj).

BQSS works fine with most stiff systems. Anyway, the
presence of the perturbation term∆f(t) increases the er-
ror and can cause the appearence of spurious equilibrium
points in some nonlinear systems.

Another limitation of BQSS is that it is only first order
accurate. We could not find, based on that idea, a second
order accurate method.

III LINEARLY IMPLICIT QSS METHODS

In this section, we introduce the new Linearly Implicit
QSS (LIQSS) methods of first and second order.

A First Order LIQSS Method

The idea of LIQSS is very similar to BQSS. The only
difference is that, when a value forqj so thatxj goes
to it cannot be found, instead of adding the perturbation
term∆fj to enforce the situatioṅxj = 0, LIQSS tries to

find the valuêqj that provokes that situation in a linearly
implicit way.

In order to illustrate this idea, we shall simulate System
(4) from the same initial conditions and quantum than be-
fore

In t = 0, we can choseq2 = 19 or q2 = 21 according
to the sign ofẋ2(t). In both cases,̇x1(0) > 0 so the quan-
tized future value ofx1 will be q1(0) = 1. On the other
hand, if we chooseq2(0) = 21 thenẋ2(0) = −180 < 0
and if we chooseq2(0) = 19, it resultsẋ2(0) = 20 > 0
so there exist a point19 < q̂2(0) < 21 in which ẋ2(0) =
0. The value forq̂2(0) can be calculated (exploiting the
linear dependence ofẋ2 with q2) as

q̂2(0) = 21 −
−180

−100
= 19.2

Then, the state derivatives result:̇x1(0) = 0.192,
ẋ2(0) = 0.

The next change inq1 is scheduled fort = 1/0.192 ≈
5.2083 while the corresponding inq2 is scheduled fort =
∞

Then, the next step takes place int = 1/0.192 ≈
5.2083. At this time,x1 = 1 andx2 = 0. After that,
q1(5.2083) = 2 (becausėx1(5.2083) > 0). If we reeval-
uateẋ2 for q2 = 19 andq2 = 21 it results lower than zero
in both cases, so the correct value isq2(5.2083) = 19 be-
cause in this wayx2 goes toq2.

With this values ofq1 and q2 de following deriva-
tives states are obtained:̇x1(5.2083) = 0.19 and
ẋ2(5.2083) = −80. The next change inq1 is scheduled
to t = 1/0.192+1/0.19 ≈ 10.47149, while the one inq2

is scheduled tot = 1/0.192 + 1/80 ≈ 5.22083. So, the
next step is given int = 5.22083, whenx2 reachesq2.

Calculations follow in this way. Fig.3 show the evo-
lution of q1(t) andq2(t) through500 units of simulated
time. As it can be seen, in this method the fast oscilla-
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Figure 3: LIQSS Simulation

tions of q2 are not present. In this way,q1 changes 21
times andq2 changes25 times, which totalizes46 steps
(this constitutes a rather decent result for a stiff system).
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B LIQSS Definition

Given System (1), the LIQSS method approximates it by
Eq.(2), where eachqj is defined by the following function

qj(t) =





q
j
(t) if fj(q(t),u(t))(qj(t) − xj(t)) ≤ 0

qj(t) if fj(q(t),u(t))(qj(t) − xj(t)) ≥ 0
∧fj(q(t),u(t))(qj(t) − xj(t)) > 0

q̃j(t) otherwise
(7)

with

q
j
(t) =





q
j
(t−) − ∆Qj

if xj(t) − q
j
(t−) ≤ 0

q
j
(t−) + ∆Qj

if xj(t) − q
j
(t−) ≥ 2 · ∆Qj

q
j
(t−) otherwise

(8)

qj(t) = q
j
(t) + 2∆Qj (9)

q̃j(t) =

{
qj(t) −

1
Ajj

· fj(q
j(t),u(t)) if Ajj 6= 0

qj(t
−) otherwise

(10)
whereqj(t) is equal toq(t−) except for thej–th compo-
nent, where it is equal toqj andAj,j is thej, j component
of the Jacobian matrix evaluated inqj , i.e.,

Ajj =
∂fj

∂xj

∣∣∣∣
q

j ,u(t−)

(11)

As we shall see now, whenAj,j 6= 0, settingqj = q̃j

provokes (in the linear case) the situationẋj = 0.

C Calculation of q̃j

We takeqj(t) equal toqj(t), except that thej–th com-
ponent isq

j
. Notice that we usẽqj whenfj changes the

sign betweenq
j

andqj . Thus, an intermediate point̂qj

exists wherefj = 0.
We takeq̂j(t) equal toqj(t), except that thej–th com-

ponent isq̂j .
Defining

Aj =
∂fj

∂x

∣∣∣∣
q

j ,u(t−)

and the residual

g(x,u) = fj(x,u) − Ajx,

calling q̂j the point wherefj = 0, we can write

fj(q
j ,u) = Ajq

j − Aj,jqj + Aj,jqj + g(qj ,u)

fj(q
j ,u) = Ajq

j − Aj,jqj
+ Aj,jqj

+ g(qj ,u)

fj(q̂
j ,u) = Ajq̂

j − Aj,j q̂j + Aj,j q̂j + g(q̂j ,u)

Taking into account thatAjq
j −Aj,jqj = Ajq̂

j −Aj,j q̂j

(becauseqj and q̂j only differ in the j–th component)
and considering thatfj(q̂

j ,u) = 0, we can solve the
previous equations for̂qj , obtaining

q̂j = qj −
fj(q

j ,u)

Aj,j

+
g(qj ,u) − g(q̂j ,u)

Aj,j

(12)

In order to estimateAj,j we can use the expresion

Aj,j ≈
fj(q

j ,u) − fj(q
j ,u)

qj − q
j

(13)

If fj depends linearly onqj , Eq.(13) gives the exact
value of the Jacobian. Moreover, in that case the last term
in Eq.(12) results zero and̃qj = q̂j , i.e., the value of̃qj

provokesẋj = 0.
In a nonlinear case, we will havẽqj ≈ q̂j , andẋj ≈ 0.

Although the oscillation will not disappear in this case,
they will have a low frequency.

This is analogous to what linearly implicit discrete
time methods do by solving the implicit equation only
for the linear part of the problem, and this is the reason
for calling LIQSS to this method.

D Second Order LIQSS: Basic Idea

The second order linearly implicit method, called
LIQSS2, was developed combining the ideas of QSS2
and LIQSS.

The quantized variables of this new method are piece-
wise linear instead of being piecewise constant and they
are chosen in such a way thatẍj · (qj − xj) > 0, i.e., so
thatxj goes towardqj .

As an example, in Figure 4 a general trajectory is
shown using this quantization idea.

q
x

t1

Figure 4: LIQSS2 Trajectories

Analogously to the case of LIQSS and BQSS, it can
happen that the sign of̈xj changes when we start a new
segment ofqj(t). Then, an intermediate slopemj exists
that makes̈xj = 0. In this case, we can also select the
initial value qj of the new segment so thatẋj = mj ,
i.e., we can make the state trajectory to run parallel to
the quantized trajectory so that no events are generated.
Both values,qj andmj , can be easily obtained whenẋj

depends linearly onqj .
If we simulate System (4) from the same initial con-

ditions but whit quantums∆q1 = 0.1 and∆q2 = 0.1
(times smallers), the LIQSS2 method only performs 59
steps(20 changes inq1 and 49 inq2 ). The simulation
results can be seen in Figure 5
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Figure 5: LIQSS2 Simulation

E LIQSS2 Definition

Given the system (1), the LIQSS2 method approximates
it by (2), where each componentqj is defined as:

qj =






qj(t) if ẍj(t) > 0∨
(ẍj(t) = 0 ∧ ẋj(t) > mj)

q
j
(t) if ẍj(t) < 0∨

(ẍj(t) = 0 ∧ ẋj(t) <= mj)
q̃j(t) otherwise

(14)

with

q
j
(t) =






xj(t0) − ∆Qj if t = t0
q

i
(t−) + ∆Qj

if (xj(t) = q
j
(t−) + 2∆Qj

q
i
(t−) − ∆Qj

if (xj(t) = q
j
(t−)

q
j
(tj) + mj · (t − tj) otherwise

(15)

qj(t) = q
j
(t) + 2 · ∆Qj (16)

q̃j(t) =






mj(t) − ẍ(t−)
Aj,j

+ qj(t
−)

if Aj,j 6= 0
qj(t

−) otherwise

(17)

and

mj =

{
ẋj(t

−) if ẍj(t) · ẍj(t
−) > 0 ∨ Aj,j = 0

mj(t
−) − ẍj(t

−)/Aj,j otherwise
(18)

Note that in Eq.(18), the condition̈xj(t) · ẍj(t
−) <

0 means that an intermediate valuemj exists so that
ẍj = 0. In a linear system this value can be calcu-
lated analogously to LIQSS with the expressionmj(t) =
mj(t

−)− ẍj(t
−)/Aj,j . In a nonlinear case, we shall also

obtain an approximate value.

IV THEORETICAL PROPERTIES

We shall treat here the most important properties of the
LIBQSS methods. We shall show first that the methods
perform a finite number of steps in a finite interval of time

(this guarantees that the simulation time will always ad-
vance). Then we shall analyze the stability and accuracy
properties.

A Trajectories and Legitimacy of LIBQSS

A crucial requirement of QSS methods is the legitimacy
condition, which ensures that a finite number of events
occurs in any finite interval of time. The following
theorem proves this property for the first order LQISS
method.

Theorem 1. Suppose that functionf in (1) is bounded in
a domainD × Du, whereD ⊂ ℜn, Du ⊂ ℜm and as-
sume that the trajectoryu(t) ∈ Du is piecewise constant.
Then,

1. Any solutionx(t) of (2) is continuous whileq(t)
remains inD.

2. The trajectoryq(t) is piecewise constant while it
remains inD.

Proof. The proof of (1) is straightforward since, accord-
ing to (2), the derivative ofx is bounded.

For the item (2), in order to prove thatq is piecewise
constant it is necessary to ensure that it only experiences
a finite number of changes in any finite interval of time.

Let (t1, t2) be an arbitrary interval of time in which
q(t) remains inD. We shall prove that, within this inter-
val,q(t) has a finite number of changes.

The assumptions of the theorem ensure thatf(q,u) is
bounded and, taking into account the relation betweenxj

andqj , positive constants̄fj exist so that, fort ∈ (t1, t2)

|ẋj(t)| ≤ f̄j ; for j = 1, . . . , n.

Let tc ∈ (t1, t2) and suppose thatqj(t
−

c ) 6= qj(t
+
c ).

According to (9), this situation cannot be repeated until
|xj(t) − xj(tc)| ≥ ∆Qj . Thus, the minimum time inter-
val between two discontinuities inqj(t) is

tj =
∆Qj

f̄j

Then, callingnj the number of changes ofqj(t) in the
interval(t1, t2), it results that

nj ≤ (t2 − t1)
f̄j

∆Qj

Sinceu(t) is piecewise constant, it will perform a finite
number of changesnu in the interval(t1, t2).

The definition ofqj ensures that it can only change
whenqj(t) changes or when there is a change in some
other quantized or input variable (qi(t) or ui(t)) that in-
verts the sign oḟxj .

In conclusion, changes inqj(t) are linked to changes
in someqi(t) or ui(t). Thus, the total number of changes
will be equal or less than the sum of all the changes in
those variables, i.e.,

nj ≤ nu + (t2 − t1)

n∑

i=1

f̄i

∆Qi

which is a finite number.
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B Perturbed representation

The theorical properties of the QSS methods are based
in a perturbed representation of the original system (1)
that is equivalent to the approximation Eq.(2). Defining
∆x(t) = q(t) − x(t) each row of System (2) can be
rewritten as:

ẋi = fi(x(t) + ∆x(t),u(t)) (19)

From (7), (8), (9) and (10) in the definition, it can be en-
sured that each component∆xi(t) of ∆x(t) is bounded
by

|∆xi(t)| ≤ 2 · ∆Qi (20)

where∆Qi is the quantization adopted forxj(t). Thus,
the LIQSS methods simulate an approximate system
which only differ from the original SES(1) due to the
presence of the bounded state perturbation.

C Global Error Bound and Stability

Given the LTI system

ẋa(t) = Axa(t) + Bu(t) (21)

wereA is a Hurwitz matrix with Jordan canonical form
Λ = V −1AV , the LIQSS(2) approximation simulates the
system

ẋ = A(x(t) + ∆x(t)) + Bu(t) (22)

Defining the error ase(t) = x(t) − xa(t), and following
the procedure of [4] and [1], it results that

|e(t)| ≤ |V ||Re(Λ)−1Λ||V −1|2∆Q (23)

where∆Q is the vector of quantum adopted.
The error bound is twice the error bound of QSS, QSS2

and QSS3.

D Equilibrium Points

One of the drawbacks of BQSS was the appearence of
spurious equilibrium points. Due to the term∆f , Eq.(6)
admits equilibrium points also whenf(q,u) 6= 0.

However, the only possibility in which LIQSS or
LIQSS2 arrive to an equilibrium point is whenf(q,u) =
0, i.e., when the quantized variables reach an equilibrium
point.

V CONCLUSIONS

We presented two new QSS methods that are based on
linearly implicit principles. We showed that these meth-
ods, called LIQSS, satisfy the global error bound property
of QSS method, but they can also simulate stiff systems.

The methods improve the performance of BQSS by
solving the problem of the spurious equilibrium points
and by increasing to 2 the order of accuracy.

The applications and examples are presented in a com-
panion paper [9]
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