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Abstract— This paper introduces two new nu- gration of discontinuous ODEs [5], sparsity exploitation
merical methods for integration of stiff ordinary dif-  [4], the property of absolute stability, and the existenice o
ferential equations. Following the idea of quantization a global error bound [1].
based integration, i.e., replacing the time discretiza- In spite of these properties, QSS, QSS2 and QSS3 fail
tion by state quantization, the new methods perform when applied to stiff systems due to the appearence of fast
first and second order backward approximations al- oscillations. To solve this problem, a first order backward
lowing to simulate stiff systems. It is shown that the QSS method (called BQSS) was proposed in [8, 10]. The
new algorithms satisfy the same theoretical proper- basic idea of the BQSS method is to ustuture value
ties of the previous methods. A companion paper with of the states to obtain the quantized value. Since the fu-
applications illustrate the practical advantages of the ture quantized magnitude can only take two values (one
methodology. from below and one from above the current quantized
. . . . variable), BQSS method results does not call for itera-
tiof;g;gﬁgé;;?fnség\ig Simulation, Quantiza- ¢ |y other words BQSS was the first explicit method

' for stiff ODEs.
The main drawback of BQSS is that it performs only

I INTRODUCTION a first order approximation and accurate results cannot
The use of traditional methods [2, 3, 1] based on timée obtained. Another problem is that BQSS introduced
discretization to integrate stiff systems require the Use @n extra perturbation term that increases the error bound
implicit algorithms since the required step size used bgnd, in some nonlinear systems, might provoke the ap-
explicit methods is limited by the stability region and thepeareance of spurious equilibrium points.
resulting step size becomes inadmissibly small [1]. This paper presents first a new method that combines

In fact, numerical integration methods that include irthe idea of BQSS and linearly implicit integration. The
their numerically stable region the entire left half-(,) new method, called LIQSS (after Linearly Implicit QSS),
plane (or at least a large portion of it) are necessary [130lves the problem of the extra perturbation term and the
Only some implicit methods have this type of stabilityappearence of spurious equilibrium points.
region. Explicit algorithms showing that feature do not Then, combining the idea of LIQSS with QSS2, we
exist. obtained a second order accurate method called LIQSS2.

The problem with implicit methods is that they areThis new method solves, up to certain limits, the problem
computationally expensive because in each step they ne@igaccuracy.
to use iterative algorithms to determine the next value The workis organized in the following way: Section I
(usually with the Newton lteration). The problem be-recalls the principles of Quantization—-Based Integration
comes critical in applications related to real time simula@nd introduces the problems of QSS methods to deal with
tion, where in many cases performing iterations becomé&diff systems. Then, Section Ill introduces the new meth-
unacceptable. ods, namely, LIQSS and LIQSS2. Section |V studies

An alternative approach to classic time slicing startethe properties of the new methods (legitimacy and error
to develop since the end of the 90's, where time disPound) and finally, Section V presents some conclusions.
cretization is replaced by state variables quantizatian. A Implementation issues and application examples are
a result, the simulation models are not discrete time bi@resented in the companion paper [9].

discrete event systems. The origin of this idea can be |, QUANTIZATION-BASED INTEGRATION

found in the definition of Quantized Systems [12, 11]. ) o o
This idea was then reformulated with the additiont NS section introduces the principles of QSS methods

of hysteresis —to avoid the appearance of infinitely fagnd shows the problems they have in the simulation of
oscillations— and formalized as the Quantized State SyStl Systems
tems (QSS) method for ODE integration in [7]. ThisA QSS Method
was followed by the definition of the second order QSS%:onsider a time invariant ODE in its State Equation Sys-
method [4], the third order QSS3 method [6]. tem (SES) representation:

The QSS—methods showed some important advantages '
with respect to classic discrete time methods in the inte- x = f(x(¢),u(t)) 1)
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wherex(t) € R" is the state vector ang(t) € R™ is an This is cyclically repeated until a changegnoccurs.
input vector, which is a known piecewise constant funcThat change occurs at~ 4.95, after 158 changes iq

tion. (which oscillates between 20 and 21).
The QSS-method simulates an approximate system, The simulation continues in the same way. Fig.1 shows
which is called Quantized State System: the evolution ofy; (¢) andg: (t) through500 units of sim-
ulated time.
(1) = f(a(t), u(t)) )
whereq(t) is a vector of quantized variables which are @ (t)
quantized versions of the state variabi¢s). Each com- »
ponent ofq(t) follows a piecewise constant trajectory,

related with the corresponding componentxgt) by a =
hysteric quantization function so that:

q; (1) { zi(t)  if|g(t7) —z;(t)| = AQ, -

¢;(t~) otherwise s

andg;(to) = z;(to). Thus,g;(t) only changes when
it differs from z;(¢) in £AQ;. The magnitudeAQ); is
called quantum.

Using the fact thagy(¢) is piecewise constant and pro-
vided that the inputi(¢) is piecewise constant, it can be
seen thak(t) is piecewise linear [7]. Consequently, the Figure 1: QSS Simulation
integration of Eq.(2) is straightforward. Moreover, the
system is equivalent to a discrete event model in terms The fast oscillations ofj; provoke a total of 15995
of the DEVS formalism [11]. A summarized explanationtransitions in that variable, whilg; only changes 21
the DEVS formalism can be found in [9]. times. Consequently, the total number of steps to com-

. plete the simulation is greater than 16000 (this number is
B QSS and Stiff Systems of the order of the 25000 steps needed by Forward Euler
The system method to obtain a stable result).
Evidently, the QSS method is unable to efficiently in-
(4) tegrate System (4).

C QSS2 Method

has eigenvalues; ~ —0.01 and A2 ~ —99.99 which  The second order QBI method uses first order quantiza-
mens that the system is stiff. tion. As it is shown in Figure 2, a first order quantizer
The QSS method approximates this system as produces a piecewise linear output trajectory. Each sec-
. tion of that trajectory starts with the value and slope of the
@1 (t) = 0.01g2(t) (5) inputand finishes when it differs from the inputx;.
2(t) = =100 q1(t) — 100 g2(t) + 2020 A formal definition of a first order quantization function
can be found in [4].

L L L L L L L L L
0 50 100 150 200 t250 300 350 400 450 500

do(t) = —100 21 (t) — 100 zo(t) + 2020

Considering initial conditions;1 (0) = 0, z2(0) = 20,
and quanta\Q; = AQ, = 1, the QSS integration per- First Order Quantizer
forms the following steps:

Int = 0 we setg;(0) = 0 andgz(0) = 20. Then,
#1(0) = 0.2 andd3(0) = 20. This situation remains
The next change igy is then scheduled at=1/0.2 =
5 while the change g2 is scheduled at= 1/20 = 0.05.
Thus, a new step is performedin= 0.05. After this
step it resultsy; (0.05) = 0, ¢2(0.05) = 21, 21(0.05) =
0.01, 22(0.05) = 21. The derivatives are:; (0.05) =

0.21 andi2(0.05) = —80.
The next change in; is rescheduled &1.05 + (1 —

0.01)/0.21 = 4.764 while the next change i, is sched- Figure 2: Trajectories of a first-order quantizer.
uled at0.05 4+ 1/80 = 0.0625. Hence, the next step is
performed at = 0.0625. The QSS2 method then approximates a system like (1)

Int = 0.0625 it resultsq; (0.0625) = 0, ¢2(0.0625) = by (2) but now, the quantized variablgst) follow piece-
x2(0.0625) = 20, x1(0.0625) ~ 0.0126 and the deriva- wise linear trajectories and the state variabtg@) are
tives coincide with those af= 0. piecewise parabolic functions of the time.
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Like the first order QSS, QSS2 can be represented liynd the valuej; that provokes that situation in a linearly
a DEVS model. The advantage of QSS2 is that it pefimplicit way.
mits using a small quantum —i.e., setting a small error In order to illustrate this idea, we shall simulate System
tolerance—without increasing considerably the number ¢#) from the same initial conditions and quantum than be-
calculations. In QSS, the number of steps is inverselfpre
proportional with the quantum, while in QSS2 itis only |n ¢ = 0, we can chose, = 19 or ¢, = 21 according
inversely proportional with its square root. to the sign ofi5 (¢). In both casesi; (0) > 0 so the quan-
QSS2 also exhibits the problem of fast oscillations inized future value of:; will be ¢;(0) = 1. On the other
the simulation of stiff systems. For instance, if we use thpand, if we choose, (0) = 21 theniy(0) = —180 < 0
QSS2 method to simulate System (4), it performs 65464nd if we choose@. (0) = 19, it resultsi, (0) = 20 > 0
steps (19 changes in and 65448 changes i3). so there exist a poiritd < ¢»(0) < 21 in whichi,(0) =
D BOSS Method 0. The value forj;(0) can be calculated (exploiting the

linear dependence af, with ¢2) as
The BQSS method is similar to QSS, hytis always
chosen so that; () goes tag; (). . —130
0)=21— ——=19.2
Basically, given a state variable;(t), BQSS uses a2(0) —100
two hysteretic quantization functions: one from below o _
(¢,(t) < x;()) and the other from abovg/(t) > ;(t)). Then, the state derivatives result;(0) = 0.192,

Both quantization functions are defined so that they nevglz(o) = 0. o
The next change i, is scheduled fot = 1/0.192 ~

differ from z; in more thareAQ);. ) L
The quantized variablg; is chosen equal to either 5.2083 while the corresponding i is scheduled fot =
- o0

J
or g;, according to the direction af;(t). Wheni; > 0 Then, the next step takes placefin= 1/0.192 ~

we usey; = g;, and viceversa. 5.2083. At this time,z; — 1 andz, = 0. After that,

When.i; = f;(q,u) depends om;, it could happen s 593y — 9 (hecauses (5.2083) > 0). If we reeval-
that the sign of the derivative changes when we evaluafe .~ .

. oo uates, for g = 19 andge = 21 it results lower than zero
f; using each possibility, i.ef;|, > 0andf;[z < 0.

i in both cases, so the correct value4$5.2083) = 19 be-
Thus, we cannot find a correct value tgr

) e L cause in this way:, goes tags.
However, in that situation, continuity ify ensures that  \nsihy this values ofg, and ¢, de following deriva-
a valueg; exists, withgj < §; <4, such thatf;|g, = 0.

tives states are obtained:i;(5.2083) = 0.19 and
Thus, the BQSS method sets eithgr= g; or¢; =  j,(5.2083) = —80. The next change i, is scheduled
q; and enforces the derivativi; = 0 adding an extra to¢ = 1/0.192+1/0.19 ~ 10.47149, while the one inp
perturbation tern f; = f;4; - is scheduled te = 1/0.192 4+ 1/80 ~ 5.22083. So, the
Then, given the system Eq.(1), instead of simulating aext step is given in = 5.22083, whenz, reachesys,.
system like Eq.(2), BQSS simulates a system of the form: Calculations follow in this way. Fig.3 show the evo-
lution of ¢ (t) andgz(¢) through500 units of simulated
x(t) = f(q(t),u(t)) + Af(t) (6) time. As it can be seen, in this method the fast oscilla-

whereA(t) is normally zero, except when the situation
described above is found (i.e., when we cannotfind a co %
rect value forg;).

BQSS works fine with most stiff systems. Anyway, the
presence of the perturbation teewf (¢) increases the er-
ror and can cause the appearence of spurious equilibrit
points in some nonlinear systems.

Another limitation of BQSS is that it is only first order
accurate. We could not find, based on that idea, a seco
order accurate method.

q1 (t)’ Z1 (t)’ qQ(t)’ Z2 (t)

Il LINEARLY IMPLICIT QSS METHODS

In this section, we introduce the new Linearly Implicit o 8 10 150 20 20 30 %0 40 460 50
QSS (LIQSS) methods of first and second order.

A First Order LIQSS Method Figure 3: LIQSS Simulation

The idea of LIQSS is very similar to BQSS. The only

difference is that, when a value fqg; so thatz; goes tions of go are not present. In this way; changes 21
to it cannot be found, instead of adding the perturbatiotimes andg, change<5 times, which totalized6 steps
termA f; to enforce the situation; = 0, LIQSS tries to  (this constitutes a rather decent result for a stiff system)
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B LIQSS Definition In order to estimate!; ; we can use the expresion

Given System (1), the LIQSS method approximates it by _; ,
Eq.(2), where eacty is defined by the following function A fi@,a) - f;(d’,v) (13)

e 7,— 4
4, @) if fi(a(®),u(®))(q; (1) — ;) < T
o) =14 1 q;(t) if fi(a(t), u(t))(q;@) — z;(t) = If f; depends linearly om;, Eq.(13) gives the exact
/\fy( (t),u(t))(g;(t ) z;(t)) >0 value of the Jacobian. Moreover, in that case the last term
g;(t) otherwise in Eq.(12) results zero ang = g, i.e., the value ofj;
_ (7) provokesi; = 0.
with In a nonlinear case, we will havg ~ ¢;, andi; = 0.
q.(t7) — AQ; Although the oscillation will not disappear in this case,
s 2,() ~ q,(t7) <0 they will have a low frequency.
1) ={ ¢.(t)+AQ; B (8) This is analogous to what linearly implicit discrete
L=y 4 i o S 9. A time methods do by solving the implicit equation only
if 2;(t) — Q_j( )= 2-AQ; for the linear part of the problem, and this is the reason
q;(t7) otherwise for calling LIQSS to this method.
7,(t) = g, (t) + 2AQ; (9) D Second Order LIQSS: Basic Idea
_ . The second order linearly implicit method, called
a:(t) = 4;(t) = 77 - J5(@ (1), u() i Az #0 LIQSS2, was developed combining the ideas of QSS2
(IJ( ) _
4;(t7) otherwise and LIQSS.

(10)
whereq’ (t) is equal tog(t~) except for thegi—th compo-
nent, where itis equal ®; and4; ; is thej, j component
of the Jacobian matrix evaluateddp, i.e.,

The quantized variables of this new method are piece-
wise linear instead of being piecewise constant and they
are chosen in such a way that- (¢; — ;) > 0, i.e., so
thatz; goes toward;.

o af; 1) As an _exam_ple, in Figl_Jre _4 a general trajectory is
= B, (i) shown using this quantization idea.

As we shall see now, wheA; ; # 0, settingq; = g;

provokes (in the linear case) the situation= 0. Y
C Calculation of g;
We takeq’ (t) equal tog’ (¢), except that thg—th com- //_ - .
ponent iggj. Notice that we usg; when f; changes the / / B
sign betweergj andg,. Thus, an intermediate poig} // / —_ /,//
exists wheref; = 0. _ / i el
We takeq’ (t) equal tog’ (¢), except that thg—th com- / ! —X
ponent isj;. ! —9 -
Defining 1 -
A= 52
q’,u(t™)
and the residual Figure 4: LIQSS2 Trajectories
g(x,u) = fj(x,u) — A;x, Analogously to the case of LIQSS and BQSS, it can
calling g; the point wheref; = 0, we can write happen that the sign df; changes when we start a new
, _ _ segment of;(¢). Then, an intermediate slope; exists
fi@,w) =A@ - Aj;q; + A4+ 9(@,u) that makesi; = 0. In this case, we can also select the
fildd,n) = A;q0 — Ajjq. + A g +g(q?,u) !nitial value g; of the new segment so that = m;,
- - = - - i.e., we can make the state trajectory to run parallel to
fild,a) = A;&7 — A4 + Aj;4; + 9(@,a) the quantized trajectory so that no events are generated.

Both valuesg; andm;, can be easily obtained when
depends linearly on,;.

If we simulate System (4) from the same initial con-
ditions but whit quantum&l¢; = 0.1 andAg, = 0.1
(times smallers), the LIQSS2 method only performs 59
. i@, u) N g(@,u) — g(&¢’, ) (12) steps(20 changes in and 49 ingz ). The simulation

4 =149 A A results can be seen in Figure 5

Taking into account thall;§’ — A; ;7, = A;&’ — A; ;;
(becausay’ and g’ only differ in the j—th component)
and considering thaf;(¢’,u) = 0, we can solve the
previous equations fay’, obtaining
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(this guarantees that the simulation time will always ad-
vance). Then we shall analyze the stability and accuracy
1 properties.

20

« A Trajectories and Legitimacy of LIBQSS

B 1 A crucial requirement of QSS methods is the legitimacy
condition, which ensures that a finite number of events
o 1 occurs in any finite interval of time. The following
theorem proves this property for the first order LQISS
st 1 method.

1 (1), 21(t), q2(t), 2(t)

42 Theorem 1. Suppose that functidhin (1) is bounded in
0 50 100 150 200 250 300 350 400 450 500 a domainD x Dua whereD C §R", Du c ®™ and as-
sume that the trajectory(¢) € D,, is piecewise constant.
Then,

1. Any solutionx(¢) of (2) is continuous whiley(t)
remains inD.

Figure 5: LIQSS2 Simulation

E  LIQSS2 Definition 2. The trajectoryq(t) is piecewise constant while it
Given the system (1), the LIQSS2 method approximates  remains inD.

it by (2), where each componeptis defined as: Proof. The proof of (1) is straightforward since, accord-

ing to (2), the derivative ok is bounded.
For the item (2), in order to prove thatis piecewise
constant it is necessary to ensure that it only experiences

q;(t) if &;(t) > ov
(l'j(t> =0A Z](t> > mj)

G=91Y ®) If__mj(t) < Ov' (14 4 finite number of changes in any finite interval of time.
_ (&;(t) = 0N (1) <= my) Let (¢1,t2) be an arbitrary interval of time in which
g;(t) otherwise q(t) remains inD. We shall prove that, within this inter-
with val, q(t) has a finite number of changes.
The assumptions of the theorem ensure fiigt u) is
bounded and, taking into account the relation between
zi(to) — AQ; ift=tg andg;, positive constantg; exist so that, for € (t,t2)
q,(t7) + AQ; (8| < fji forj=1,....n.
if (z;(t) = q.(t7) +2AQ; B _
¢t = (t) - AQ; J (15) Lett. € (t1,12) and suppose thap,(t;) # 7,(tf).
’ 4;\ o According to (9), this situation cannot be repeated until
it (z;(t) = g,(t7) _ |z (t) — 2;(t.)| > AQ;. Thus, the minimum time inter-
4;(t;) +m; - (t —t;) otherwise val between two discontinuities fy () is
g;t) = g (t)+2-AQ; (16) AQ;

t; =

fi
Then, callingm; the number of changes gf;(¢) in the
interval (t1, t2), it results that

my() =) | -
—Lg——+q(t)

Gt = it A;; 0 (17)
g;(t~) otherwise

— i
and ER G tl)AQj
i (t7) if @(t)-#,(t7) >0V A, =0 Sinceu(t) is piecewise constant, it will perform a finite
- J J J J»J . .
m; { m;(t~) —i;(t7)/A;,; otherwise number of changes, in the interval(ty, t2).
’ (18) The definition ofg; ensures that it can only change

Note that in Eq.(18), the conditiod; (t) - i;(t~) < Wheng;(t) changes or when there is a change in some
0 means that an intermediate value; exists so that other quantized or input variable;(t) or u;(t)) that in-
i; = 0. In a linear system this value can be calcuverts the sign of;.

lated analogously to LIQSS with the expressiop(t) =  In conclusion, changes igy () are linked to changes
m;(t~)—#;(t~)/A; . Inanonlinear case, we shall alsoin someg; (t) or u;(t). Thus, the total number of changes
obtain an approximate value. will be equal or less than the sum of all the changes in

those variables, i.e.,
IV THEORETICAL PROPERTIES nf
We shall treat here the most important properties of the nj <ny + (t2 — 1) Z Aé}
LIBQSS methods. We shall show first that the methods i=1 "
perform a finite number of steps in a finite interval of timewhich is a finite number. O
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B Perturbed representation
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C Global Error Bound and Stability
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A = V1AV, the LIQSS(2) approximation simulates the

system
% = A(x(t) + Ax(t)) + Bu(t) (22)
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D Equilibrium Points
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