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Abstract— This paper introduces a novel event-driven
sampled-data feedback scheme where the plant output samples
are triggered by the crossings—with hysteresis—of the signal
through its quantization levels. The plant and controller com-
municate over binary channels that operate asynchronously
and are assumed to be error and delay-free. The paper
proposes two systematic output feedback control design strate-
gies. The first strategy consists in the digital emulation of a
previously designed analog controller. The second strategy is
a simple direct design that drives the plant state to the origin
in finite time after a total transmission of 2n+2 bits, where n
is the order of the plant.

I. INTRODUCTION

A number of recent works consider the problem of feed-
back stabilization over a communication channel with data-
rate constrains (see [1] for an overview). A fundamental
result in this area states that there exist a positive lower
bound on the data-rate [bits per second] required for closed
loop stability of a linear time invariant, continuous-time
plant with poles in the open right-half plane [2], [3].

An underlying assumption for this fundamental result is
that the output of the plant is sampled in an essentially
time-drivenfashion; be it uniform and periodic, as in [2], or
nonuniform, as in [4], [5]. Namely, the samples are obtained
largely independently of the plant dynamic evolution.

Event-drivensampling schemes, such asLebesguesam-
pling, have been considered as alternatives to conventional
time-driven sampling schemes [6], [7], [8]. In Lebesgue
sampling, samples are triggered by the crossing of the signal
through quantization levels, which presents a number of
potential advantages for networked control, such as clock-
free operation, low data-rate requirements [6], and higher
energy efficiency in digital-to-analog conversion [9]. On the
other hand, a main disadvantage is that control analysis and
design become more difficult, thus little theory for event-
driven sampled-data systems seems available, in contrast
with the well-developed theory for time-driven periodic
sampled-data systems [10].

The present paper explores the use of a level-crossing
sampling (LCS) scheme based onhysteretic quantizationfor
feedback stabilization. LCS may be viewed as a Lebesgue
sampling scheme in which the quantizer includes hysteresis.
Hysteresis allows us to implement 1-bit coding feedback
communication in the proposed control strategies, which
has the potential to achieve the most efficient data-rates
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[5]. In addition, under noisy scenarios, hysteresis would
also minimize spurious sampling, further contributing to
low data-rate feedback communication.

Two asynchronous control design strategies based on
LCS are introduced: 1) an event-driven “emulation” of a
previously designed analog controller, and 2) a “direct”
design using a combined deadbeat estimation and control
scheme. The “emulated” controller is implemented as a
quantized state system[11] that approximates the original
analog controller. If the latter achieves closed-loop asymp-
totic stability, we show that its “emulation” guarantees
ultimate boundedness of the trajectories around the origin.
We also estimate an upper bound for the difference between
the closed-loop trajectories obtained by both controllers.

The “direct” design control strategy consists in two
sequential open-loop procedures: (i) deadbeat estimation
of the unknown initial condition, (ii) deadbeat bang-bang
control to the origin. Assuming no disturbances in the plant
outputs, this strategy drives the plant state to the origin in
finite time under the constraint of 1-bit (delay and error-
free) transmissions, both between sensor and controller, and
between controller and actuator. Consequently, under the
idealized conditions assumed, the scheme achieves stability
with effectively zero average data-rate, appearing to cir-
cumvent the data-rate limitations known for feedback over
communication channels based on time-driven sampling.
However, noisy measurements, plant uncertainties and time
delays will certainly impose a non-zero average data-rate,
as we discuss in Section IV-D.

In Section II we present our assumptions and the scheme
under study. Section III presents the proposed asynchronous
emulation design, gives its main properties and introduces
a numerical simulation example. Section IV presents the
proposed direct design strategy and poses a discussion on
the issue of stabilization under data-rate constraints with
conventional sampling, and with the proposed LCS design
strategy. Section V summarizes the paper conclusions.

II. LEVEL CROSSING SAMPLING SCHEME

The general feedback scheme considered is shown in
Figure 1. We model two communication links: a sensor link,
between the measured plant output and the controller input,
and an actuator link, between the controller output and plant
input. These communication links are assumed to be error-
free and have no noise disturbances nor transmission delays.
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Fig. 1. Event-driven sampled-data scheme for feedback stabilization

Plant.: The plant is a continuous-time, finite dimen-
sional LTI system given by the minimal realization

ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t). (1)

The matricesA,B,C are assumed known, but the system
initial condition x(0) is unknown.

Actuator.: The actuator that can only produce values
in the setU , {−pU, · · · ,−U,0,U, · · · , pU} whereU is a
positive real constant andp is a positive integer. We assume
that the switching of the actuator is instantaneous and the
values are held constant (in a zero-order-hold fashion) until
a different value ofu(t) is generated.

Level crossing sampling with hysteresis:Given h > 0
and a continuous functiony(t) : R→R, we define thelevel-
crossing sampled sequence{ys(tk)}∞

k=0 with quantization
interval hby the piecewise constant functionys(t) : R→R,

ys(t) =

{

by(t0)/hch, if t0 ≤ t < t1,

y(tk), if tk ≤ t < tk+1,
(2)

where b·c denotes integer part, and the sampling instants
{tk}∞

k=1 defined by

tk = inf {τ ∈ (tk−1,∞) : |y(τ)−ys(tk−1)| > h} . (3)

From (2) and (3) we see that the samplesys(tk) are
triggered by the crossings (with hysteresis) of the signal
y(t) through quantization levels regularly spaced byh. We
denote byQh{·} the hysteretic quantization operatorwith
quantization intervalh defined byys(t) = Qh{y}(t). Note
that Qh{·} is a dynamicnonlinearity, because of the inbuilt
hysteresis in the definition of the sequence{tk} in (3).

The LCS device in Figure 1 generates a new sample
of the output y(t) wheneverys(t) = Qh{y}(t) 6= ys(t−).
Because successive samples always differ in±h, each
sample can be coded using only one bit, thus reducing
the amount of information that needs to be transmitted. In
this sense, the LCS operation may be likened to an “event-
driven” differential pulse-code modulation.

Coder/Digital Channel. Sensor link:We assume that
the digital channel is memory-less and error-free, and can
only transmit one bit, 0 or 1, per asynchronous sample
produced by the LCS device. The coding strategy is the
following: When a sample is produced, at sayt = tk, the
channel transmits

{

1, if ys(tk) > ys(tk−1),

0, if ys(tk) < ys(tk−1).
(4)

Thus, a 1 is transmitted if the current sample of the output
has increased with respect to its previous sample, or a 0 if it
has decreased. If no samples are produced, no transmission
takes place. However, notice that in the proposed scheme
there is also information when no samples are produced;
namely, the outputy(t) remains within its quantization band.

Decoder. Sensor link.:The decoder receives the se-
quence of bits indicating the changes inys and calculates

yr(tk) =

{

h, when 1 is received,

−h, when 0 is received.
(5)

Notice that

yr(tk) = ys(tk)−ys(tk−1). (6)

Digital controller: The controller receives the asyn-
chronous sequence of valuesyr(tk) and produces a sequence
of control actionsus(τ j), where the time sequences{tk} and
{τ j} are different in general. We considerus(τ j) ∈ U , and
us(τ0) = 0. We also restrict|us(τ j)−us(τ j−1)| ∈ {U,2pU},
that is, successive control actions differ in one quantization
level or they can jump between the saturation limits. This
restriction permits coding the successive control values
using only one bit. In the next sections we shall propose
two different strategies to calculate the sequenceus(τ j).

Coder/digital channel. Actuator link:The coding strat-
egy is similar to that of the sensor link, transmitting only
when the controller produces a control signal that differs
from its value at the previous sampling instant. Then, when
a sample is produced att = τ j , the channel transmits

{

1, if us(τ j)−us(τ j−1) ∈ {−2pU,U}

0, if us(τ j)−us(τ j−1) ∈ {−U,2pU}
(7)

Decoder. Actuator link:The actuator decoder receives
the sequence of bits informing the changes inus, and it
builds the signalur(τ j) according to following logic



















ur(τ j−1)+U, if ur(τ j−1) < pU and 1 is received

ur(τ j−1)−U, if ur(τ j−1) > −pU and 0 is received

−pU, if ur(τ j−1) = pU and 1 is received

pU, if ur(τ j−1) = −pU and 0 is received

Provided thatur(τ0) = us(τ0) = 0, we haveur(τ j) = us(τ j).

III. CONTROLLER DESIGN BY EMULATION

We next introduce a method for designing a digital
control law as an approximation of a previously designed
continuous-time controller. The approximation is carriedout
by implementing the analog controller as aquantized state
controller. Such emulation approach was introduced in [11],
and is based on a numerical integration algorithm called
the Quantized State System (QSS) method [12]. The QSS
method can be seen as the state discretization counterpart
of Euler’s time discretization.



A. An Introductory Example

Consider the unstable plant

ẋ(t) = x(t)+u(t); y(t) = x(t), (8)

which is asymptotically stabilized by the PI controller

ż(t) = y(t); u(t) = −2y(t)−z(t). (9)

We replace the control law (9) by the QSS approximation

ż(t) = ys(t); yc(t) = −2ys(t)−ζ (t), (10)

where

ys(t) = Qh{y}(t) and ζ (t) = Qg{z}(t) (11)

are variables quantized with intervalsh andg.
Let us assume thatU = {· · · ,−4,−2,0,2,4, · · ·}; that

is, U = 2 in U as defined in Section II. Then,us(t) is
calculated as the nearest element ofU from yc(t).

We select the quantization intervals in (11)h = 0.5 and
g= 0.1. Consider the initial conditionsx(0) = 10 andz(0) =
ζ (0) = 0; the system will then evolve as follows:

• At t = 0 the controller receives the valueys(t) = 10.
According to (10) we haveyc(t) = −20 and ż(t) =
10. Thus,us(t) = −20. These values remain constant
until a new sampleys is received or untilζ (t) changes.
The next change inζ (t) is produced when it differs
from z(t) in 0.1. Sincez(t) grows with a slope of 10,
that will happen whent = 0.1/10. Thus, the controller
schedules the next change inζ (t) for t = 0.01.

• At t = 0.01 we haveζ (t) = z(t) = 0.1, yc(t) = −20.1
and u(t) remains equal to−20. The slope ˙z(t) also
remains constant and next change inζ (t) is then
scheduled fort = 0.02.

• At t = 0.02, ζ (t) = z(t) = 0.2, yc(t) = −20.2 and the
remaining variables do not change. After two identical
steps, we havet = 0.04 andζ (t) = z(t) = 0.4, yc =
−20.4 and the next change is scheduled fort = 0.05.

• However, whent = 0.0488, it turns out thaty(t) = 9.5
and a new sampleys = y = 9.5 is then sent to the
controller. Thus,yc(t) =−19.4 and thenus(t) remains
equal to−20. The controller state can be calculated as
z(t) = 0.4+0.0088×10= 0.488, while its new slope
becomes 9.5. Thus, the next change inζ (t) will occur
after(0.05−0.0488)/9.5= 0.000126 units of time and
the calculations continue in the same way.

The quantized controller (10) works as a discrete event
system: it receives a sequence of valuesys(t) and it
schedulesinternal changes (whenζ (t) changes) as well as
generatingoutput events (whenus(t) changes).

As we can see from the initial sequence of events
in the evolution of the closed-loop system (8), (10), the
calculations inside the controller are very simple and can
be implemented in a digital system. As we shall show, the
emulated controller (10) behaves similarly to the continuous
controller (9), in the sense that the closed-loop trajectories

generated will be close to those that would be generated
with the original analog controller.

We next generalize and more formally define the idea
behind the controller approximation in this example.

B. Quantized State Controller (QSC)

Let the continuous-time controller previously designed
for the plant (1) be given by the state realization

ż(t) = Acz(t)+Bcy(t)

u(t) = Ccz(t)+Dcy(t),
(12)

and assume that the continuous-time closed loop system (1),
(12) is asymptotically stable. We also assume that the state
realization (12) is in the observer canonical form [13].

The QSC approximation of the controller (12) is a
continuous-time system defined by the state equations

ż(t) = Acζ (t)+Bcuc(t)

yc(t) = Ccζ (t)+Dcuc(t),
(13)

wherez∈R
nc, andζ ∈R

nc is the component-wise quantized
version of the state vectorz, that is,

ζ =
[

Qg1{z1} Qg2{z2} . . . Qgnc
{znc}

]T
, (14)

where eachQgi{·} is a quantization function with hysteresis,
with quantization intervalsgi , i = 1, . . . ,nc.

Since the plant output is only available from the received
samplesyr(tk) = ys(tk)−ys(tk−1), we can calculate

uc(t) = uc(tk−1)+yr(tk), for tk ≤ t < tk+1. (15)

Then, provided that the sequenceyr(tk) includes information
about the initial outputy(t0) (e.g., by allowing the transmis-
sion of m bits during initialization to inform that the initial
output is±mh) we haveuc(tk) = y(tk).

Sinceuc(t) is piecewise constant, the components ofζ (t)
and yc(t) are also piecewise constant and the components
of z(t) are piecewise linear and continuous.1

Note that: (i) the calculation of the resulting output
sequenceyc(τ j) does not require numerical integration as
(13) is already a discrete system, and (ii) each component
ζi(t) of ζ (t) only changes when|ζi(t j)−zi(t j)| = gi . Since
xi(t) is continuous, this implies that|ζi(t j)−ζi(t j−1)| = gi .
By taking into account that System (12) is in the observer
canonical form, it follows thatyc(t) = ζ1(t) + Duc(t) and
then yc(t) changes with jumps of either±g1 (when ζ1

changes) or±Dch (whenuc changes).
We have assumed that the controller outputus(t) ∈ U .

To accomplish this condition, defineus(t) as the nearest
element ofU from yc(t). Then, if g1 ≤ U and Dch ≤ U ,
we have thatus(τ j)−us(τ j−1) =±U , and we can apply the
coding and decoding strategies proposed in Section II.

1System (13) is equivalent to adiscrete event systemin terms of the
DEVS formalism [14]; see [12] for a DEVS model equivalent to (13).



C. Properties of the QSC Scheme

By defining∆z(t) , ζ (t)−z(t), ∆u(t) , u(t)−yc(t) and
∆y(t) , uc(t)−y(t), we can rewrite Equation (13) as

ż(t) = Ac(z+∆z)+Bc(y+∆y)

u(t) = Cc(z+∆z)+Dc(y+∆y)+∆u(t).
(16)

Notice that|∆y(t)| ≤ h and |∆zi | ≤ gi for i = 1, · · · ,nc.
If we assume also that the controller outputyc(t) cannot

reach the saturation bounds±pU (becausep is sufficiently
large), then it is also true that|∆u(t)| ≤U .

The closed loop system (1), (16) can be written as

ẇ(t) = Ã(w(t)+∆w(t))+F∆v(t) (17)

where

w(t) ,

[

x(t)
z(t)

]

;∆w(t) ,

[

0n×1

∆z(t)

]

;∆v(t) ,

[

y(t)
u(t)

]

,

and

Ã =

[

A+BDcC BCc

BcC Ac

]

; F =

[

BDc B
Bc 0

]

.

Since the ideal closed loop system (1), (12) is

ẇ(t) = Ãw(t), (18)

we have that (17) is just a perturbed version of (18). Thus,
the absolute value of each component of the perturbation
terms∆w(t) and∆v(t) in (17) is bounded by eitherh, gi or
U . To formalize, write

|∆w(t)| ≤ g ,











0n×1

g1
...

gnc











; |∆v(t)| ≤ γ ,

[

h
U

]

(19)

where | · | denotes the component-wise module and the
inequality sign≤ denotes a component-wise inequality.

Theorem 1:Suppose that the closed loop system (18) is
asymptotically stable and letw(t) be its solution from the
initial conditionw(0) = w0. Let w̃(t) be the solution of (17)
from the same initial conditionw0 and letΛ = V−1ÃV be
a modal decomposition of̃A. Then, for allt ≥ 0,

|w̃(t)−w(t)| ≤ |V|×
(

|Re(Λ)−1Λ||V−1|g+
∣

∣Re(Λ)−1V−1F
∣

∣γ
)

. (20)

Proof: Define ε(t) , w̃(t)−w(t). Then, subtracting
(18) from (17) we obtain

ε̇(t) = Ã(ε(t)+∆w(t))+F∆v(t)

with ε(0) = 0. The perturbation terms verify (19).
If Ã is diagonalizable, Theorem 3 of [15] concludes

|ε(t)| ≤ |V|× (|Re(Λ)−1Λ||V−1|g+ |Re(Λ)−1V−1F |γ)

for all t ≥ 0. Otherwise, the same result is derived following
a procedure developed in Theorem 3.3 of [16].

This theorem says that the state trajectory of the plant
with the quantized state controller remains close to the

state trajectory of the plant with the original continuous
controller. Since the state trajectories go to zero, the QSC
trajectories go to a bounded region around the origin whose
size is calculated by the right hand side of Eq.(20). The
existence of the ultimate region is ensured irrespective of
the discretization parametersh, U , andgi , i = 1, · · · ,nc (they
only affect the size of that region).

D. Example Revisited

Figure 2 shows simulation results of the System (8),(10).
After t = 7.0823 the plant reaches the origin. In that moment
the controller produces the inputu= 0 and then the system
remains in that state without producing more samples or
calculations at the controller. The total number of samples
ys received by the controller were 41, while the number of
samplesu sent by the controller were 28. Since each change
can be coded with only one bit, the number of transmitted
bits was 61 in the sensor link (we added here 20 bits to
transmit the initial value ofys) and 28 in the actuator link.
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Fig. 2. Clockwise from top left corner: plant statex(t); controller state
ζ (t); plant input u(t); and controller inputys(t) and plant outputy(t).
Solid lines indicate trajectories with the emulated controller; dash-dot lines
indicate those with the target continuous-time controller.

Using Theorem 1 we can prove that the trajectories of
the plant with the continuous controller and those of the
system with the discrete controller never differ in more
than 1.8856 (in both variables,x and z). In this case, due
to the particular choice of the controller and quantization
intervals h,g,U , the plant effectively reaches the origin.
More generally, however, the QSC implementation will
yield final oscillations (bounded according to Theorem 1)
requiring a nonzero average data-rate. The quantification of
bounds of such data-rate is subject of current work.

IV. DIRECT DEADBEAT CONTROL DESIGN

We now present a different stabilization strategy based
on LCS by hysteretic quantization that drives the state of



the system (1) to the origin in finite time from an unknown
initial condition x(0) = x0. In other words, we will show
that with an asynchronous LCS scheme, it is possible to
achieve stability after transmitting a finite number of bits.

Consider the feedback scheme of Figure 1, as described
in Section II, and we assume that the plant (1) is unstable.

The proposed stabilization strategy consists in two open-
loop procedures performed sequentially: 1) Finite-time ini-
tial state estimation 2) Finite-time control to the origin.

A. Finite-Time Initial State Estimation

Set the control inputu(t) = 0. The controller input
receives one bit per sample indicating whether the system
output has increased (a 1 received) or decreased (a 0 re-
ceived) in a valueh with respect to the previous sample. The
sampling times{t0, t1, . . .} are also recorded. The sampling
times coincide with the samplesarrival times, since there
is no transmission delay.

Let x(0) = x0 be the plant initial state and let
{t0, t1, . . . , tn}, be the sequence of sampling times corre-
sponding to the firstn+1 samples, wheren, recall, is the
order of the plant (1). Sinceu(t) = 0, we have

y(t0) = CeAt0x0, y(t1) = CeAt1x0, · · · y(tn) = CeAtnx0.

Sincey(0) is unknown, from (6) we write

Yr ,











yr(t1)
yr(t2)

...
yr(tn)











=











C(eAt1 −eAt0)
C(eAt2 −eAt1)

...
C(eAtn −eAtn−1)











x0 , E x0. (21)

Then, since the sampling instants{t0, t1, . . . , tn} are avail-
able, and the vectorYr is known independently of the value
y(0) (due to the property (6)), we can obtainx0 = E−1Yr

after receivingn+1 bits, providedE is nonsingular.

B. Non Pathological Sampling

The nonsingularity of the matrixE can be seen as
analogous to the well-known non pathological sampling
condition in periodic sampled-data systems [17, p. 40–42].

Theorem 2:Assume that the matrixA is unstable and
it has only nonzero real eigenvalues. Then, provided that
the pair (A,C) is observable, the matrixE defined in
Equation (21) is non singular.

Proof: Suppose that the matrixE is singular. Then,
the equationE x0 = 0 has non trivial solutions. Let ˜x0 6= 0 be
one of these solutions and define ˜y(t) , CeAtx̃0. It follows
thatỹ(tk)− ỹ(tk−1) = Ekx̃0 = 0 for k= 1,2, . . . ,n, whereEk ,

C(eAtk −eAtk−1). Then, ỹ(t0) = ỹ(t1) = · · · = ỹ(tn+1), which
implies that the system output crossesn+1 times the value
ỹ(t0). This, however, is impossible for a system of ordern
in absence of null or complex eigenvalues.

If the plant had complex or null eigenvalues, the matrixE
might be singular. However, the pathological sampling con-
dition can only occur if the sampling instantst1, . . . , tn+1 (the
instants of crossing of the outputy(t) by levels separated by
±h) coincide with the instants in which ˜y (the output from

a different initial condition) crosses a unique level. Such
situation is indeed possible if the plant has null eigenvalues,
because the output might then remain constant from some
initial condition. For complex eigenvalues, we conjecture
that pathological sampling can be made impossible by
choosingh sufficiently small with respect toy(t0). In that
case, the sampling instantst0, t1, · · · will turn out to be
such that the elapsed timetn+1− t0 results shorter than the
shortest period of any natural oscillation mode in the plant.

C. Finite-time Control to the Origin

Now, at any timeτ0 > tn we knowx(0) exactly, and thus
can computex(τ0) = eAτ0x0, and fromx(τ0) we can drive
the system to the origin in finite time by an open loop bang-
bang strategy in a maximum ofn+1 switches of the input
u(t), which for simplicity we can assume to take values in
the set{−U,0,U}, for some sufficiently largeU > 0.

The switching times{τ1,τ2, . . . ,τn−1} and the time of
arrival to the origin τn can be computed by different
methods by solving a minimum time control problem [18].

Thus, stability with the proposed LCS scheme is achieved
in finite-time; namely, with the transmission of 2n+2 bits.

D. Remarks on Stabilization under Data-Rate Constraints

The above two-cycle LCS stabilization strategy appears
to, at least in some simple cases, circumvent limitations
in the problem of feedback stabilization under data-rate
constraints. If the plant is stabilized by digital feedback
control by periodically sampling ofy(t) at a rate 1/T Hz
and a synchronous zero-order-hold is used to generate the
controlu(t), then it is known the plant (1) can be stabilized
if and only if the average data-rate satisfies [19], [3]

R
T

> (log2e)
m

∑
i=1

Repi > 0 bits per second.

On the other hand, we have seen above that the LCS strategy
achieves feedback stability after the transmission of 2n+2
bits; namely, withzeroaverage data-rate.

This may appear as an intriguing property of the pro-
posed asynchronous LCS digital control strategy. However,
it should be noted that we have relied on: 1) instanta-
neous availability of information about the sampling in-
stants{t0, t1, . . . , tn} 2) knowledge of the sampling instants
{t0, t1, . . . , tn} to infinite precision. In practice, there will
be delays in transmission, which, if unknown, will prevent
stability with the proposed ideal strategy. Also, note that
although the information about the measured output is
quantized, it is exact. Yet, approximation will be necessary
in recording the sampling times{t0, t1, . . .} digitally, which
would then need to be quantized to finite precision.

Effectively, this stabilization strategy makes use of an
inherent coding of the output amplitudes into the sequence
of sampling instants. If these sampling instants were not
exactly known (due to unknown delays or quantization),
the plant will not in general reach the origin in finite
time at the end of the control cycle. Since the plant is



assumed to be unstable, the output will then start crossing
new quantization levels, and a new set of estimation/control
cycles will have to be repeated. Following this idea, we
would then necessarily arrive at a nonzero average data-
rate to achieve closed-loop stability.

Let us now consider an alternative time-driven sampling
stabilization approach. In the ideal situation we assumed
that the channel can transmit one bit at any instant of time.
Thus, it could be alternatively argued to periodically sample
the plant output and send two bits, together with an interval
of time proportional to that output value, in a pulse-width
modulated fashion. Namely, we could then code (and also
decode) the plant output with infinite accuracy. Thus, after
receivingn samples (corresponding in this case to 2n bits)
it would be possible to estimate the plant initial state and
apply a control strategy to drive the state to the origin, again
achieving stability with a finite number of transmitted bits.

In terms of transmitted information, the above reasoning
shows that by allowing the channel to transmit at any instant
of time is equivalent to the transmission of an infinite
amount of information per sample. Under these conditions,
a time-driven sampling strategy could also achieve stability
in a finite number of transmissions.

It would thus seem that the only advantage of the
proposed event-driven sampling scheme is that it uses
simpler devices than those required by the above pulse-
width modulation coding strategy.

However, in a non-ideal case (that is, in the presence
of unknown delays, noise, etc), such time-driven sampling
scheme must continue to sample using aworst-casesam-
pling period, so that the output does not escape too far away
from the origin.

On the other hand, the proposed event-driven sampling
scheme will only generate samples (and act on the actuator
communication link) only when the plant output reaches
the value±h. Thus, if the estimation of the initial state was
sufficiently good—for example, because during such period
we did not have large perturbations—the plant will reach
a state very close to the origin and it will take a relatively
long time until the output reaches±h.

V. CONCLUSIONS

We have presented a digital control formulation based
on an asynchronous level-crossing sampling scheme by
hysteretic quantization. Such formulation appears attractive
in control scenarios in which feedback is implemented over
data-rate limited channels, which we have illustrated by pre-
senting two approaches for control design: an asynchronous
digital emulation design, and a direct digital design strategy.

In asynchronous emulation, a previously designed analog
controller is implemented as a quantized state controller,
which is shown to guarantee practical stability. In some
cases—as in the example introduced—it also achieves sta-
bility after a finite number of transmissions.

The direct digital design strategy consists in an open
loop deadbeat estimation cycle, followed by a bang-bang

control cycle to drive the plant state to the origin. Stability
is achieved with a finite number of transmissions.

Measurement noise and model uncertainty will in general
prevent finite-time stability with these schemes. Never-
theless, it would be of interest to quantify and compare
their overall performance with that of approaches based on
conventional periodic time-driven sampling and quantized
measurements. This will be the topic of future work.
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