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Abstract— This paper introduces a novel event-driven [5]. In addition, under noisy scenarios, hysteresis would
sampled-data feedback scheme where the plant output samples glso minimize spurious sampling, further contributing to

are triggered by the crossings—uwith hysteresis—of the signal low data-rate feedback communication
through its quantization levels. The plant and controller com- )

municate over binary channels that operate asynchronously ~ TWO asynchronous control design strategies based on
and are assumed to be error and delay-free. The paper LCS are introduced: 1) an event-driven “emulation” of a
proposes two systematic output feedback control design stret  previously designed analog controller, and 2) a “direct”

gies. The first strategy consists in the digital emulation of a design using a combined deadbeat estimation and control

previously designed analog controller. The second strategy is w N o
a simple direct design that drives the plant state to the origin scheme. The “emulated” controller is implemented as a

in finite time after a total transmission of 2n+ 2 bits, wheren ~ quantized state systeffi1] that approximates the original
is the order of the plant. analog controller. If the latter achieves closed-loop gsym

totic stability, we show that its “emulation” guarantees
l. INTRODUCTION ultimate boundedness of the trajectories around the origin
A number of recent works consider the problem of feedwe also estimate an upper bound for the difference between
back stabilization over a communication channel with datathe closed-loop trajectories obtained by both controllers
rate constrains (see [1] for an overview). A fundamental The “direct’ design control strategy consists in two
result in this area states that there exist a positive |0W%'équential open-loop procedures: (i) deadbeat estimation
bound on the data-rate [bits per second] required for closed the unknown initial condition, (i) deadbeat bang-bang
loop stability of a linear time invariant, continuous-timecontrol to the origin. Assuming no disturbances in the plant
plant with poles in the open right-half plane [2], [3]. outputs, this strategy drives the plant state to the origin i
An underlying assumption for this fundamental result iginite time under the constraint of 1-bit (delay and error-
that the output of the plant is sampled in an essentiallifee) transmissions, both between sensor and controfidr, a
time-drivenfashion; be it uniform and periodic, as in [2], or petween controller and actuator. Consequently, under the
nonuniform, as in [4], [5]. Namely, the samples are obtainegjealized conditions assumed, the scheme achieves stabili
largely independently of the plant dynamic evolution.  \jth effectively zero average data-rate, appearing to cir-
Event-drivensampling schemes, such kebesguesam-  cymvent the data-rate limitations known for feedback over
pling, have been considered as alternatives to convettiongmmunication channels based on time-driven sampling.
time-driven sampling schemes [6], [7], [8]. In Lebesguayowever, noisy measurements, plant uncertainties and time

sampling, samples are triggered by the crossing of the signge|ays will certainly impose a non-zero average data-rate,
through quantization levels, which presents a number @fs we discuss in Section IV-D.

potential advantages for networked control, such as clock-

free ope;fa_m_on, IO.W ((jj.at.a—lr ate reqluwements .[6]’ gnd mh'ghetrnder study. Section Il presents the proposed asyncheonou
energy etliciency in '|g|ta -to-anal 0g conversion [9]. *?t egwlation design, gives its main properties and introduces
other hand, a main disadvantage is that control analysis a3%umerical simulation example. Section IV presents the

ge_3|gn beco:nz (rjnore difficult, thus little th_le%rly f(_)r eventy roposed direct design strategy and poses a discussion on
r.|\r/]enhsamp"e d- a’ia s;(/jstehms sefems. ava:jg €, In 903_” L issue of stabilization under data-rate constraint wit
with the well-developed theory for time-driven periodic ., entional sampling, and with the proposed LCS design

sampled-data systems [10]. _Strategy. Section V summarizes the paper conclusions.
The present paper explores the use of a level-crossing

sampling (LCS) scheme based loysteretic quantizatiofor

feedbgck stabilizaf[ion. !_CS may be_viev_ved as a Lebesgl_Je Il. LEVEL CROSSING SAMPLING SCHEME

sampling scheme in which the quantizer includes hysteresis

Hysteresis allows us to implement 1-bit coding feedback . . )

communication in the proposed control strategies, which_The general feedback scheme c_ons_|dered IS Sh°V.V“ n

has the potential to achieve the most efficient data-ratéddure 1. We model two communication links: a sensor link,

between the measured plant output and the controller input,
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In Section Il we present our assumptions and the scheme



: Actuator communication link : : Sensor communication link

Thus, a 1 is transmitted if the current sample of the output
Ur u

: Ly Y : . . N . .
3) Analog | ;:E ,,w 3 has increased with respect to its previous sample, or a O if it

has decreased. If no samples are produced, no transmission

| Mo : | Loveloossing i takes place. However, notice that in the proposed scheme
Cha;‘”e' . : oy channel | - there is also information when no samples are produced;
" [ Coder_J=—{ Digital ~ I <! i namely, the outpug(t) remains within its quantization band.

Decoder. Sensor link..The decoder receives the se-
Fig. 1. Event-driven sampled-data scheme for feedback igiaiiin quence of bits indicating the changesyinand calculates

) — h,  when 1 is received 5

Plant.: The plant is a continuous-time, finite dimen- yr(t) = —h, when 0 is received ®)

sional LTI system given by the minimal realization
Notice that
X(t) = Ax(t) + Bu(t), y(t) = CX(t). 1)
Yr (t) = Ys(tc) — Ys(tk—1)- (6)

The matricesA,B,C are assumed known, but the system
initial condition x(0) is unknown. Digital controller: The controller receives the asyn-

Actuator.: The actuator that can only produce valueghronous sequence of valugsty) and produces a sequence
in the set% £ {—pU,---,—U,0,U,---,pU} whereU is a  of control actionsus(1j), where the time sequencé} and

positive real constant anglis a positive integer. We assume{7;} are different in general. We considey(t;) € %, and

that the switching of the actuator is instantaneous and thi(To) = 0. We also restrictus(Tj) — us(tj—1)| € {U,2pU},

values are held constant (in a zero-order-hold fashiori) unthat is, successive control actions differ in one quaritzat

a different value ofu(t) is generated. level or they can jump between the saturation limits. This
Level crossing sampling with hysteresiGivenh >0  restriction permits coding the successive control values

and a continuous functioy(t) : R — R, we define théevel- using only one bit. In the next sections we shall propose

crossing sampled sequendgs(ty)}i_, with quantization two different strategies to calculate the sequenge;).

interval hby the piecewise constant functigg(t) : R — R, Coder/digital channel. Actuator linkThe coding strat-
hih i tn< egy is similar to that of the sensor link, transmitting only
ys(t) = y(to)/h]h, ' bst<t, 2) when the controller produces a control signal that differs
y(t), if e <t <ty from its value at the previous sampling instant. Then, when
where || denotes integer part, and the sampling instan® Sample is produced at=7j, the channel transmits
{tx} i, defined by _
| | L if u(m) —u(Ta) € (=200} o)
te =iInf{T € (te-1,) : [Y(T) —¥s(tk-1)[ > h}.  (3) 0, if us(tj)—us(Tj_1) € {~U,2pU}

From (2) and (3) we see that the samplggty) are ] )
triggered by the crossings (with hysteresis) of the signa] Decoder. Actuator link:The actuator decoder receives
y(t) through quantization levels regularly spacedtbyve the sequence of bits informing the changesuin and it
denote byQn{-} the hysteretic quantization operatawith ~ Puilds the signali(7j) according to following logic
quantization intervah defined byys(t) = Qn{y}(t). Note

that Qn{-} is adynamicnonlinearity, because of the inbuilt Ur (Tj-1) +U, ?f Ur(7j-1) < pU and 1 is'receiV(.ed

hysteresis in the definition of the sequer{tgl in (3). Ur(Tj-1) —U, if u(7j-1) > —pU and O is received
The LCS device in Figure 1 generates a new sample | —pU, if ur(1j—1)=pU and 1 is received

of the outputy(t) wheneverys(t) = Qn{y}(t) # ys(t™). pU, if ur(Tj_1) = —pU and 0 is received

Because successive samples always differth, each

sample can be coded using only one bit, thus reducir@rovided thau (7o) = Us(To) = 0, we haveu, (Tj) = us(Tj).

the amount of information that needs to be transmitted. In

this sense, the LCS operation may be likened to an “event- [Il. CONTROLLER DESIGN BY EMULATION

driven” differential pulse-code modulation. . __ -
Coder/Digital Channel. Sensor linkie assume that e next introduce a method for designing a digital

the digital channel is memory-less and error-free, and c&Pntrol law as an approximation of a previously designed

only transmit one bit, 0 or 1, per asynchronous Samp@ontmuous—tlme controller. The approximation is cariaed

produced by the LCS device. The coding strategy is thRY implementing the analog controller agjaantized state
following: When a sample is produced, at say ty, the controller. Such emulation approach was introduced in [11],
channel transmits ' ' and is based on a numerical integration algorithm called

) the Quantized State System (QSS) method [12]. The QSS
1, if ys(tk) > Ys(tk-1), (4) method can be seen as the state discretization counterpart
0, if ys(tk) < Ys(tk—1)- of Euler’s time discretization.



A. An Introductory Example generated will be close to those that would be generated
with the original analog controller.

We next generalize and more formally define the idea
X(t) =x(t) +u(t); yt) =x(t), (8) behind the controller approximation in this example.

Consider the unstable plant

which is asymptotically stabilized by the Pl controller B. Quantized State Controller (QSC)

Z(t) =y(t); u(t) =—2y(t) —z(t). 9) Let the continuous-time controller previously designed

for the pl 1 i h lizati
We replace the control law (9) by the QSS approximationOr the plant (1) be given by the state realization
2(t) = Acz(t) +Bey(t)

2(t) = ys(t); ye(t) = —2ys(t) — (1), (10) u(t) = Coz(t) + Dey(t)

and assume that the continuous-time closed loop system (1),
ys(t) = Qn{y}(t) and {(t) =Qq{z}(t) (11) (12) is asymptotically stable. We also assume that the state
realization (12) is in the observer canonical form [13].

The QSC approximation of the controller (12) is a
continuous-time system defined by the state equations

12)

where

are variables quantized with intervdisand g.
Let us assume thaty = {---,—4,-2,0,2,4,---},; that
is, U =2 in % as defined in Section Il. Theny(t) is

calculated as the nearest elementZoffrom ye(t). Z(t) = Ac{(t) + Beug(t) 13
We select the quantization intervals in (11)= 0.5 and Ve(t) = Cod (t) + Do (), 13)

g=0.1. Consider the initial conditiong0) = 10 andz(0) =

{(0) = 0; the system will then evolve as follows: whereze R", and{ € R" is the component-wise quantized

« At t =0 the controller receives the valyg(t) = 10.  version of the state vectar that is,
According to (10) we havey(t) = —20 andz{t) = T
10. Thus,us(t) = —20. These values remain constant {=[Qu{zn} Qui{z} - Qulzl] . (14
until a new samplgs is received or untif (t) changes.
The next change i (t) is produced when it differs

from z(t) in 0.1. Sincez(t) grows with a slope of 10, Wltsh_ qua?r:lzatllontlnt(:rvillgi, ! |: 1"'.'|’ T)CI' ¢ th ved
that will happen wher = 0.1/10. Thus, the controller Ince the plant output 1S only available from he receive

schedules the next change dit) for t = 0.01. samplesy; (t) = Ys(t) — Ys(ti-1), we can calculate
« At t=0.01 we have{(t) = z(t) = 0.1, y¢(t) = —20.1
and u(t) remains equal to-20. The slopez(t) also
remains constant and next change §iit) is then Then, provided that the sequengét) includes information
scheduled fot = 0.02. about the initial outpuy(to) (e.g., by allowing the transmis-
« At t=0.02, {(t) =2(t) = 0.2, y¢(t) = —20.2 and the sjon of m bits during initialization to inform that the initial
remaining variables do not change. After two identicabuytput is+mh) we haveug (ty) = y(ty).
steps, we have = 0.04 and{(t) = z(t) = 0.4, yc = Sinceuc(t) is piecewise constant, the components (tf)
—20.4 and the next change is scheduled fer 0.05.  andy,(t) are also piecewise constant and the components
« However, whert = 0.0488, it turns out thay(t) =9.5  of z(t) are piecewise linear and continuous.
and a new samplgs =y =95 is then sent to the  Note that: (i) the calculation of the resulting output
controller. Thusye(t) = —19.4 and therus(t) remains - sequencey,(t;) does not require numerical integration as
equal to—20. The controller state can be calculated a§) 3) js already a discrete system, and (i) each component
Z(t) = 0.4+ 0.0088x 10= 0.488, while its new slope z,t) of Z(t) only changes whett; (tj)—z(tj)| = gi. Since
becomes %. Thus, the next change #t) will occur () js continuous, this implies thag () —Gi(tji-1)| = gi.
after (0.05-0.0488)/9.5 = 0.000126 units of time and gy taking into account that System (12) is in the observer
the calculations continue in the same way. canonical form, it follows thayc(t) = {1 (t) + Dug(t) and
The quantized controller (10) works as a discrete eveRjien y(t) changes with jumps of eithet-g; (when gy
system: it receives a sequence of valuggt) and it changes) or-Dch (whenue changes).
schedul_eénternal changes (whed (t) changes) as well a5 \ne have assumed that the controller outpyft) € % .
generatingoutputevents (whenus(t) changes). To accomplish this condition, defines(t) as the nearest
As we can see from the initial sequence of eventgiement of% from yc(t). Then, if g, <U and Dch < U,
in the evolution of the closed-loop system (8), (10), th§ye nave thatis(T;) —Us(Tj_1) = +U, and we can apply the

calculations inside the controller are very simple and Cafoding and decoding strategies proposed in Section Il
be implemented in a digital system. As we shall show, the

emulated controller (10) behaves Slm”arly to the COI‘.IFLIBJO 1system (13) is equivalent to discrete event systein terms of the
controller (9), in the sense that the closed-loop trajéesor DEVS formalism [14]; see [12] for a DEVS model equivalent to)(13

where eaclQy {-} is a quantization function with hysteresis,

Ue(t) = Uc(tk—1) +Yr(tk), for te <t <typq. (15)



C. Properties of the QSC Scheme
By definingAz(t) = (t) — z(t), Au(t) £ u(t) —yc(t) and
Ay(t) £ uc(t) —y(t), we can rewrite Equation (13) as
2(t) = Ac(z+ Az) + Bc(y + Ay)
u(t) = Ce(z+Az) + De(y+Ay) +Au(t).
Notice that|Ay(t)] <h and|Az| <gj fori=1,--- nc.
If we assume also that the controller outguft) cannot
reach the saturation boundgpU (because is sufficiently

large), then it is also true thafu(t)] <U.
The closed loop system (1), (16) can be written as

(16)

W(t) = A(w(t) +Aw(t)) + FAv(t) a7
where
a [X(B)]. s [Onxa]. a (Y1)
w(t) £ [Z(t)] (Aw(t) £ [Az(tl)] (AV(t) [u(t)} 7
and i_ [A+BDC BCG|, - _[BD. B
AN T
Since the ideal closed loop system (1), (12) is
W(t) = Aw(t), (18)

we have that (17) is just a perturbed version of (18). Thu
the absolute value of each component of the perturbatic

termsAw(t) andAv(t) in (17) is bounded by eithdr, g; or
U. To formalize, write

onxl
01 h

ol <g= | 7 s vol<y= |5 ao)
gnc

where |- | denotes the component-wise module and th
inequality sign< denotes a component-wise inequality.
Theorem 1:Suppose that the closed loop system (18) i

asymptotically stable and let(t) be its solution from the ~

initial conditionw(0) = wo. LetW(t) be the solution of (17)
from the same initial congitiomvo and letA = V1AV be
a modal decomposition dk. Then, for allt > 0,

IW(t) —w(t)] < V]x

(Re(/\)‘1/\|V‘1|g+|]Re(/\)‘1V‘1F|y>. (20)

AN

Proof: Define £(t) = W(t) —w(t). Then, subtracting
(18) from (17) we obtain
g(t) = A(e(t) + Aw(t)) + FAV(t)

with £(0) = 0. The perturbation terms verify (19).
If A is diagonalizable, Theorem 3 of [15] concludes

le(t)] < V| x (|[Re(A) AV g+ [Re(A) "V IF|y)

state trajectory of the plant with the original continuous
controller. Since the state trajectories go to zero, the QSC
trajectories go to a bounded region around the origin whose
size is calculated by the right hand side of Eq.(20). The
existence of the ultimate region is ensured irrespective of
the discretization parametédnsU, andg;, i =1,--- ,nc (they
only affect the size of that region).

D. Example Revisited

Figure 2 shows simulation results of the System (8),(10).
After t =7.0823 the plant reaches the origin. In that moment
the controller produces the input= 0 and then the system
remains in that state without producing more samples or
calculations at the controller. The total number of samples
ys received by the controller were 41, while the number of
sampless sent by the controller were 28. Since each change
can be coded with only one bit, the number of transmitted
bits was 61 in the sensor link (we added here 20 bits to
transmit the initial value of/s) and 28 in the actuator link.
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Fig. 2. Clockwise from top left corner: plant staté); controller state
{(t); plant inputu(t); and controller inputys(t) and plant outputy(t).
Solid lines indicate trajectories with the emulated cofgroldash-dot lines
indicate those with the target continuous-time controller.

Using Theorem 1 we can prove that the trajectories of
the plant with the continuous controller and those of the
system with the discrete controller never differ in more
than 1.8856 (in both variableg,and 2). In this case, due
to the particular choice of the controller and quantization
intervals h,g,U, the plant effectively reaches the origin.
More generally, however, the QSC implementation will
yield final oscillations (bounded according to Theorem 1)
requiring a nonzero average data-rate. The quantificafion o
bounds of such data-rate is subject of current work.

for all t > 0. Otherwise, the same result is derived following

a procedure developed in Theorem 3.3 of [16]. ]

IV. DIRECT DEADBEAT CONTROL DESIGN

This theorem says that the state trajectory of the plant We now present a different stabilization strategy based
with the quantized state controller remains close to then LCS by hysteretic quantization that drives the state of



the system (1) to the origin in finite time from an unknowna different initial condition) crosses a unique level. Such
initial condition x(0) = Xp. In other words, we will show situation is indeed possible if the plant has null eigenesju
that with an asynchronous LCS scheme, it is possible tmecause the output might then remain constant from some
achieve stability after transmitting a finite number of bits initial condition. For complex eigenvalues, we conjecture

Consider the feedback scheme of Figure 1, as describétht pathological sampling can be made impossible by
in Section Il, and we assume that the plant (1) is unstablehoosingh sufficiently small with respect tg(tp). In that

The proposed stabilization strategy consists in two opermase, the sampling instantg,t,--- will turn out to be
loop procedures performed sequentially: 1) Finite-timie in such that the elapsed timg 1 —tp results shorter than the
tial state estimation 2) Finite-time control to the origin.  shortest period of any natural oscillation mode in the plant

A. Finite-Time Initial State Estimation C. Finite-time Control to the Origin

Set the control inputu(t) = 0. The controller input  Now, at any timerg > t, we knowx(0) exactly, and thus
receives one bit per sample indicating whether the systegan computex(Tp) = e*oxo, and fromx(To) we can drive
output has increased (a 1 received) or decreased (a O tge system to the origin in finite time by an open loop bang-
ceived) in a valuén with respect to the previous sample. Thepang strategy in a maximum of+ 1 switches of the input
sampling times{to,t1,... } are also recorded. The samplingy(t), which for simplicity we can assume to take values in
times coincide with the samplesrival times, since there the set{—U,0,U}, for some sufficiently larg&) > 0.
is no transmission delay. The switching times{ry,T2,...,T,_1} and the time of

Let x(0) = x be the plant initial state and let arrival to the origin 7, can be computed by different
{to,ta,...,ta}, be the sequence of sampling times corremethods by solving a minimum time control problem [18].
sponding to the firsh+1 samples, where, recall, is the  Thus, stability with the proposed LCS scheme is achieved

order of the plant (1). Since(t) =0, we have in finite-time namely, with the transmission oh2-2 bits.
t
Y(to) =Cex0, y(t1) =C&™X, - Y(t) =Cé"x0. b Remarks on Stabilization under Data-Rate Constraints
Sincey(0) is unknown, from (6) we write The above two-cycle LCS stabilization strategy appears
vi (t2) C(eAtl—eAtO) to, at least in some simple cases, circumvent limitations
y:(tz) C(eM — i) in the problem of feedback stabilization under data-rate

= ) = X0 2 Exp. (21) constraints. If the plant is stabilized by digital feedback
: : control by periodically sampling of(t) at a rate 1T Hz
Vi (th) C(el\h — A1) and a synchronous zero-order-hold is used to generate the
controlu(t), then it is known the plant (1) can be stabilized
if and only if the average data-rate satisfies [19], [3]

Then, since the sampling instanfk,ts,...,ta} are avail-
able, and the vectox; is known independently of the value

y(0) (due to the property (6)), we can obtaip = E~1Y R m .
after receivingn+ 1 bits, providedE is nonsingular. T > (log;€) i;Repi >0 bits per second

B. Non Pathological Sampling On the other hand, we have seen above that the LCS strategy
The nonsingularity of the matriXE can be seen as achieves feedback stability after the transmissionrof2
analogous to the well-known non pathological samplindits; namely, withzero average data-rate.
condition in periodic sampled-data systems [17, p. 40—42]. This may appear as an intriguing property of the pro-
Theorem 2:Assume that the matrid is unstable and posed asynchronous LCS digital control strategy. However,
it has only nonzero real eigenvalues. Then, provided th#t should be noted that we have relied on: 1) instanta-
the pair (A,C) is observable, the matriE defined in neous availability of information about the sampling in-
Equation (21) is non singular. stants{to,t1,...,tn} 2) knowledge of the sampling instants
Proof: Suppose that the matrik is singular. Then, {to,ts,...,tq} to infinite precision. In practice, there will
the equatiork xo = 0 has non trivial solutions. Leb %0 be be delays in transmission, which, if unknown, will prevent
one of these solutions and defiggt) ™= CeM%o. It follows — stability with the proposed ideal strategy. Also, note that
thaty(ty) —¥(tx_1) = Exo=0fork=1,2,....,n, whereEx= although the information about the measured output is
C(e’« — eM1), Then,yTty) = ¥(t1) = --- = §(th+1), Which  quantized, it is exact. Yet, approximation will be necegsar
implies that the system output crosses 1 times the value in recording the sampling timego,ts,...} digitally, which
Y(to). This, however, is impossible for a system of order would then need to be quantized to finite precision.
in absence of null or complex eigenvalues. ] Effectively, this stabilization strategy makes use of an
If the plant had complex or null eigenvalues, the maltix inherent coding of the output amplitudes into the sequence
might be singular. However, the pathological sampling comsf sampling instants. If these sampling instants were not
dition can only occur if the sampling instarnis...,t,.1 (the exactly known (due to unknown delays or quantization),
instants of crossing of the outpy(t) by levels separated by the plant will not in general reach the origin in finite
+h) coincide with the instants in which (the output from time at the end of the control cycle. Since the plant is



assumed to be unstable, the output will then start crossimgntrol cycle to drive the plant state to the origin. Staili

new quantization levels, and a new set of estimation/cbntres achieved with a finite number of transmissions.

cycles will have to be repeated. Following this idea, we Measurement noise and model uncertainty will in general

would then necessarily arrive at a nonzero average datarevent finite-time stability with these schemes. Never-

rate to achieve closed-loop stability. theless, it would be of interest to quantify and compare
Let us now consider an alternative time-driven samplingheir overall performance with that of approaches based on

stabilization approach. In the ideal situation we assumezbnventional periodic time-driven sampling and quantized

that the channel can transmit one bit at any instant of timeneasurements. This will be the topic of future work.

Thus, it could be alternatively argued to periodically séemp
the plant output and send two bits, together with an interval
of time proportional to that output value, in a pulse-width [1]
modulated fashion. Namely, we could then code (and also
decode) the plant output with infinite accuracy. Thus, after
receivingn samples (corresponding in this case toldts) [
it would be possible to estimate the plant initial state and
apply a control strategy to drive the state to the originjraga
achieving stability with a finite number of transmitted bits [l

In terms of transmitted information, the above reasoning
shows that by allowing the channel to transmit at any instant
of time is equivalent to the transmission of an infinite [4]
amount of information per sample. Under these conditions,
a time-driven sampling strategy could also achieve stgbili
in a finite number of transmissions.

It would thus seem that the only advantage of the
proposed event-driven sampling scheme is that it usem)
simpler devices than those required by the above pulse-
width modulation coding strategy.

However, in a non-ideal case (that is, in the presenceq7]
of unknown delays, noise, etc), such time-driven sampling
scheme must continue to sample usingv@rst-casesam-
pling period, so that the output does not escape too far awajg]
from the origin.

On the other hand, the proposed event-driven sampling
scheme will only generate samples (and act on the actuatqg]
communication link) only when the plant output reaches
the valueth. Thus, if the estimation of the initial state was|,
sufficiently good—for example, because during such period
we did not have large perturbations—the plant will reaclfl]
a state very close to the origin and it will take a relatively
long time until the output reachesh. [12]

(5]

V. CONCLUSIONS

We have presented a digital control formulation baseg4)
on an asynchronous level-crossing sampling scheme b%/
hysteretic quantization. Such formulation appears ateac (£5]
in control scenarios in which feedback is implemented over
data-rate limited channels, which we have illustrated tey pr [16]
senting two approaches for control design: an asynchronous
digital emulation design, and a direct digital design sggt  [17]

In asynchronous emulation, a previously designed analo
controller is implemented as a quantized state controller,
which is shown to guarantee practical stability. In some
cases—as in the example introduced—it also achieves sta-
bility after a finite number of transmissions. (19

The direct digital design strategy consists in an open
loop deadbeat estimation cycle, followed by a bang-bang

[13]

] F. Grognard and R. Sepulchre,

] G.N. Nair and R.J. Evans,
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