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Abstract: A recent paper introduced a level crossing saglLCS) scheme that produces
samples as triggered by the crossing of the system outpomighrits quantization levels.
That paper also proposed an LCS control strategy, by whiabpan loop unstable system
can be stabilized using feedback over error and delay fregrpicommunication channels.
Assuming exact knowledge of the sampling times and outpuaserements, such LCS
control strategy drives the system state to the origin inditime. The present paper relaxes
these assumptions and shows, for scalar systems, thatigithimite-time stabilization is no
longer possible, practical stability can be achieved. Esgions for ultimate error bounds and
conditions for closed-loop stability are given.

Keywords: Event-based sampling, Networked control system

1. INTRODUCTION The present paper relaxes the assumptions in Kofman
and Braslavsky (2006) in two ways: (1) we consider
that sampling times are approximated to their nearest

Motivated by recent developments in networked con- value in the set0, T, 2T, 3T,...}, whereT > 0 is the

trol theory (e.g. Antsaklis and Baillieul, 2004), Kof- time quantization interval, and (2) we consider that the
man and Braslavsky (2006) have introduced a novel system output is corrupted by bounded measurement
level crossing sampling (LCS) scheme and a LCS noise. The present preliminary results, developed for a
control design strategy for feedback stabilization over first order plant, show that after the application of one
communication channels with data-rate constraints. cycle of the proposed estimati@ontrol procedures,
LCS direct design is an asynchronous sampled-datathe state of the system is not driven to the origin but to
control technique that consists on the sequential ap-some final state; # 0. We derive bounds or; that
plication of two open-loop procedures: (1) finite-time are useful in determining conditions for practical sta-
estimation of the system state initial conditia(D), bility and estimating the average data-rates resulting
(2) finite-time control to the origin by application of a by repeatedly applying LCS estimatjaontrol cycles.

bang-bang control procedure. Kofman and Braslavsk
9 9 P yThe general setup from Kofman and Braslavsky

(2006) show that the system state can be driven to the C ) : . ; .
origin in finite time from an arbitrary initial condition (2006) is given in Section 2, while Section 3 reviews

after the transmission of 2+ 2 bits, wheren is the or- the LCS direct control design strategy on a simple first

der of the system. Such finite-time stabilization relies ?rder systte_m.t_ Sect|(;1r_1| 4SStuS'eﬁ?t? gfezanlplln?
on the assumptions delay and error-free transmissions. ¢ guan |zat lon, w 'g elc lon > studieseets o S
the knowledge of the sampling times to infinite preci- :r:;a;uremen noise. L-onclusions are given n sec-

sion, and exact output measurements.
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2. LEVEL CROSSING SAMPLING FEEDBACK
SCHEME

The general feedback scheme considered is shown in
Figure 1. We model two communication links in the
feedback loop: a sensor communication link, between
the measured plant output and the controller input, and
an actuator communication link, between controller
output and plant input. These communication links
are assumed to be error-free and have no noise dis- -
turbances nor transmission delays.
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Fig. 2. Event-driven sampliriguantization

Actuator communication link : Sensor communication link

" : Ys :
ui) i |y N A fundamental_property of the propo_;ed LCS scheme
| ‘ ‘ Eﬁ Y ‘ is that successive samples alway@etiin £h. Conse-
‘ N'E'E,?JZ.SI ° ‘ e e ngisg?tlsis ~ quently, each sample can be coded using only one bit,
e w —1 e thus reducing the amount of information that needs to
o [Ccoger =11 contoter [ = [oecoder <! be transmitted.

Fig. 1. Event-driven sampled-data scheme for feed-

back stabilization over digital channels Codeydigital channel. Sensor link: We assume that

the digital channel is memory-less and error-free, and
can only transmit one bit, O or 1, per asynchronous
sample produced by the LCS device. The coding strat-
egy is the following: When a sample is produced, at
x(t) = AX(t) + Bu(t), sayt = t, the channel transmits

1)
y(O) = CXO). L if ys(td) > Ys(ten),
The matricesA, B,C are assumed known, but the 0, if ys(tk) < Ys(tk-1)-

system initial condition(0) is unknown. Thus, a 1 is transmitted if the current sample of the

output has increased with respect to its previous sam-
ple, or a O if it has decreased. If no samples are pro-

a positive real constant. We assume that the switchingduced’ no transmission takes place. However, notice

g éhat in the proposed scheme there is also information
of the actuator is instantaneous and the values are hel Wwhen no samples are produced: namely, the ottt
constant (in a zero-order-hold fashion) until &elient P P ' Y

value ofu(t) is generated. remains within its quantization band.

Plant: The plant is a continuous-time, finite dimen-
sional LTI system given by the minimal realization

(4)

Actuator: We consider an actuator that can only
produce values in the s&f = {-U,0,U} whereU is

Decoder. Sensor link: The decoder receives the se-
uence of bits indicating the changesyiynand calcu-
tes

Level crossing sampling deviceThe proposed LCS
scheme generates asynchronous samples of the outpy
y(t) whenever it diters from the previous sample in a ) )
fixed quantityh > 0, which we call the output am- yi(t) = {h’ when 1 is received )
plitude quantization interval. Lef(t) be continuous- —h, when 0 is received

time and (scalar) real valued. Then the LCS device Notice that

produces the quantized (but exact) samples

Ys(t) = y(t) 2

at the sampling instantg, k= 0,1,2,... defined by Digital controller: The controller receives an asyn-
: ) hronous sequence of valugéty) and produces a se-
ty = inf{r € (t_1, 7] : - VYs(tk-2)| > h}. 3 ¢ . .
k (7 € (ter, 71 @) = Ys(ta)l > ) ) guence of control actions(t;), where—in general—
Figure 2 illustrates an output signal produced by such the time sequencegandr; are diferent.
LCS device, plotted together with the input signal that .
b g P ¢ We consider thatis(r)) € U, andug(rg) = 0. We

generates it, for a quantization interve 1. shall also restriqus(-rj) _Us(Tj—1)| € (U.2pU}, that is,
Notice that the proposed LCS scheme (2), (3) hassuccessive control actionsfidir in one quantization
hysteresis which in general reduces the number of level or they can jump between the saturation limits.
samples generated. Moreover, if the derivativey(of This restriction permits coding the successive control
is bounded, hysteresis guarantees that a nonzero timgalues using only one bit.

interval exists between successive samples. A simi-
lar sampling scheme (without hysteresis) ebesgue
sampling, analyzed in Agim and Bernhardsson (2002)
for the control of a double integrator.

Yr () = Ys(t) — Ys(tk-1). (6)

In Section 3 we describe theCS direct desigaontrol
strategy, from Kofman and Braslavsky (2006), which
shows a way to calculate the sequence of control
actionsus(r;) based on a bang-bang control strategy.
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Codeydigital channel. Actuator link: The coding
strategy in the actuator link is similar to that of the
sensor link, transmitting only when the controller pro-
duces a control signal thatftérs from its value at
the previous sampling instant. Then, when a sample
is produced at = 7j, the channel transmits

|

Decoder. Actuator link: The actuator decoder re-
ceives the sequence of bits informing the changes in
us, and it builds the signal; (r;) according to follow-

ing logic

1,
0,

if us(tj) — us(tj-1) € {-2U, U}

sl _ )
if us(tj) — us(tj-1) € {-U, 2U}

Ur(tj-1) + U, if u(7j-1) < U and 1is received
U (tj-1) - U, if u(7j-1) > -U and O is received
-U, if ur(rj-1) = U and 1 is received
U, if ur(rj-1) = -U and O is received

Notice that, provided that, (7o) = us(ro) = O, it is
always true that (1) = us(t;).

3. REVIEW OF THE LCS DIRECT DESIGN
CONTROL STRATEGY

We consider the first order system
X(t) = px(t) + u(t), (8)

wherep > 0 is known andkg is unknown. Without loss
of generality, we assume tha§ > 0. We next briefly
illustrate the LCS direct design strategy on this system
as presented in Kofman and Braslavsky (2006). As
anticipated in Section 1, this strategy consists in two
sequential open-loop cycles: a finite-time estimation
of the initial conditionx(0) (while the control is set

X(0) = o,

the controller and the sampling tintg is registered
exactly(to infinite precision).

The second sampbgt,) is generated when

X(t2) = X(ta) = (€™ - e)xo = h. (11)

A second bit “1” is sent through the channel and
instantly received at the controller. The timer registers
to exactly.

The initial state is now estimated from the exact
knowledge ot; andt; by

h

(ePe — ePh) (12)

Xo = Xo-
Because there are no transmission delays or errors in
t; andty, the estimate is also exact. No more samples

are taken fronx(t) at this point.

The peakdata-rate in bits per second required for the
estimation ofxg is
2
(t2—t1)
Sincet; andt, are the sampling times at whict{t)

crosses the first two quantization levels, we have from
(9) and (11) that

X(to) = ePWx(t)) o (k+ 1h=elWkh

Re:

wherek is given by (10), and thus follows that

1 k+1
-t = B'Og(—k ), (13)
and hence,
2p
= — (14)
Iog('ikl)

From Equation (14) we see that the peak dataRate

to zero), and a subsequent bang-bang control strategy,i pe the lowest when the initial condition is such

to drive the state to the origin in finite-time (while
measurements are ignored).

3.1 Finite-time estimation ofgx

As the system starts from(0) = %o > 0, while the
input is set at this stage to= 0, the state will evolve
following the increasing exponential

x(t) = eP'xp > 0.

The first samplex(t;) is generated by the LCS device
whenx(t) crosses its first quantization level,
ePlixg = kh, 9)
whereh > 0 is the quantization interval foq(t), andk
is the positive integer
k2 [x/h]+1, (20)

where| xo/h| denotes the integer part &f/h. Because
X(t1) > 0, a bit “1” is transmitted through the commu-
nication channel. The bit “1” is instantly received at

that it falls within the first quantization level, that is,
k = 1. Larger initial conditions will require higher data
rates to obtain the estimate. Such lowest data-rate is

R‘renin 2p

- log 2
which coincides with the loweshveragedata rate
required for stability for this system (Baillieul, 2002).

= (log, €) 2p,

3.2 Finite-time control to the origin

At time t, we apply the constant control signt) =
—U. From the exact knowledge &§ > 0, we compute
the timets until which this control signal should be

applied,
ut) = {

to drive x(t) to the origin at = t3, that is,

-U Vtithb<t<ts

15
0 Vi:t>ts, (15)
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o 3 (ts—7) 4. EFFECTS OF SAMPLING TIME
0 = X(t3) = €”*x - t e” M drU QUANTIZATION
2
U . . . .
= ePlixy — (ePls ) _ 1) = We will now consider that the times, t,, t5 in the con-
P trol strategy described in the previous section cannot
oty=t+ 1 Iog(%), (16) be known exactly, but have to @pproximatedto a
1 - pePXo/U value in the se{0, T, 2T, 3T,...}, for some suitable

where in this case ™= xo from (12). We can see from  time quantization interval T 0. The approximation
(16) that since we nedd > t,, thenU should satisfy of t, tp, t3 will affect the estimateo; and thereby the
U > pePoxp = phik + 1) (17) computation of the control switchfftime ts.

to be able to drive the state to the origin. Thus, the
design of a suitable valug requires the prior specifi- A .
cation of a bound on the possible initial conditions for ty=[t/TIT,  t2=[t/T1T, (20)

the system. whereft] = |t] + 1. Thusfy, f, are multiples ofl . Note

Assuming that computation time is negligible add ~ that for the estimation procedure to work, we need
satisfies (17) for all initial conditions in a predeter- thattz =t > T, which is guaranteed by the following
mined set, at tim& we have the exact value & > 0, requirement, which we assume to hold throughout the
with which we computet;. We thus transmit a bit ~Presentsection.

“0” through the actuator communication channel to ) ] o
indicate that the control action = —U should be  Assumption l(Largest time quantisation interva).

applied fromt = t, and then transmit a bit “1” at For all initial conditions for the system (&) : |><0] <
time t5 to indicate thau = 0 should be applied from  kh, for some predeterminekl > 1,h > 0, the time
then on. The state has thus been driven to the originduantization interval > 0 satisfies

with the transmission of two more bits (in addition to bty > 2T & T < = Io k+ 1 1)
the two transmitted through the sensor channel for the 21 2p N+ /)
estimation ofx).

Denote byf; andf, the approximated values tf and
to. We then have that

The resulting peak data-rate in bits per second for theAssumption 1 means that the system evolution for all

control cycle is, from (16), admissible initial conditions is such that the crossing
2 2p of two levels of the system output will elapse for at
(18) least two time quantization intervals.

=% 10g(emm)
We see from (18) that, in contrast with the estimation
case, the data-rate for control can be madatrarily
low by designindJ suficiently close toph(k + 1). For
example, if we také) = 2ph(k + 1) we obtain

4.1 Hfects on the estimation of x

Assuming that two samples aft) have already been
registered during the estimation cycle, now at the

_ — (log. €) 2 in approximated sample timef, f,, the formula (12)
Re = Iog 2 = (log;€)2p = R¢ then yields the initial condition estimate
But if we take sa: - h
om ebtz — Pty
U= (2m ) ph(k + 1), (19) Since now the sample timés t, only approximate the

true sample values, t, according to (20), there will

withm=2,3,4,..., we obtain be an error in the estimatg. The following bounds

R. = _ Rremn are easily obtained from (12) and (22).
mlog 2
The larger the value af, the “tighter” the resulting ~ L€mma 2(Error in%). The error in the estimatioxy
value ofU and the lower the required data rate. using (22) satisfies

-1 Xo—%o _ el -1
ept-ti) —@PT = x5 7 ePT — g P(t-t:)’

Of course, sinceg is unknown,U cannot be predeter-
mined accurately. We thus see that in achieving finite-
time stability with low data-rates there is a trad&-o Where Xo,t1,t> are the system initial condition and
between the minimum data-rate for control and the exact sample times.

level of uncertainty in the bound that specifies the set

of admissible initial conditions.

(23)

4.2 Hfects on the final state
The combined estimatigeontrol data-rate is then

The open-loop control procedure described in Sec-
4 4|0 . ; : :
Rejc = G-+ (-t | ) tion 3.2 will generally yield a nonzero final state =
! og(l ph(k+1)/u 3 ) x(t3) after the application of the control signal
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-U vt:Hh<t<t
u(t) = 2sl<ls
0 Vi:t>1s,

wheref; is computed from (16) using the estimagg "
from (22) and the registered sample time approxima-
tion G,

(24)

~ o~ 1

tz3=1+ plog(l_ pePfZ)“(O/U)' (25)
Depending on whether the computed estimatés a
lower or upper bound ofy, the control action (24) will
be insuficient or excessive in bringing the state to the
origin. The following proposition gives bounds on the
resulting final statex(fs).

Proposition 3.(Bounds on final state). Consider the sys;

tem (8) with initial statex(0) = xg such thatxg| < kh
for some positive integeg, and letT > 0 satisfy (21).
Then, ifU in (24) is such that) > ph(k + 1) +
1), the final statex(f3) obtained after the application
of one cycle of the LCS estimatigmontrol procedure
satisfies

B . B
ke = eigiey *0
where
h(k + 1) ePT(ePT — 1) @7

" 1- ph(k+ 1)(PT + 1)/U"”

PROOF. First note that we can show from (25) that

(ep(f3—f2) _ 1) U

= ™%,
p

(28)

which then implies that

. s
X(f3) = e™oxg — f e’t I U dr,
f
U

p
P (X0 — Ro)
1- pergy/U’
where in the last step we have used the identity
1
1- pefaxy/U’
which also follows from (25).

- epf3Xo _ (ep(frfz) - ]_)

= &(x0— %) = (29)

epf3 e_ pfz —

On the other hand, the lower bound &f & Xp)/%o in
(23), together with the fact thaP(z~) > &PT (from
Assumption 1) implies that

%o < (1+ePM)x,
which, in turn, yields (usingy < t; + T)

&M%y < ePePTRy < eP2(e”T + 1)xo.  (30)
Finally, the bounds (26) follow from using the bounds
in (23) on the ternx,— %o in the numerator of (29), the
bound (30) foreP2%, in the denominator of (29), and
the equalitiegP~) = (k+ 1)/k andePexq = h(k + 1)
(which follow from (13) and (9)). o

5. EFFECTS OF BOUNDED MEASUREMENT
NOISE

5.1 Efect on the initial state estimation

We consider again the system of Equation (8), but we
now assume that the state measuremenffécted by

an unknown but bounded additive noig#), |n(t)| < 7.

For simplicity, in contrast with the previous section,
we will assume throughout this section that sample
times are known exactly.

The measured output is

y(t) = X(t) + (1) = €'x0 + (D). (31)
The samples are now generated wheng(@+rather
than x(t)—crosses the amplitude quantization levels.
Although successive samples still satisfy

h = y(t2) — y(t2) = €°%x0 + n(t2) — €°" %0 — n(ta),

the computed estimation of the initial condition incurs
an estimation errofxg,

0= G gn = X0~ A%, (32)
which can be written as
1) — n(t 1) — n(t
AXo = n(t) — n(t2) _ n(t1) — n(t2) X. (33)

eP —ePt  h+p(t) - n(t2)
Notice from (32) and (33) that the amplitude quanti-
zation intervalh must be at least twice the maximum
noise amplituden. Otherwise, the estimation error
could be infinite.

5.2 Error after one estimatigoontrol cycle

At time t, the controller has the estimatg computed
from (32), and thus the estimated state at ttpis

K(tp) = €PLR(0). (34)

The applied control is aimed at driving the state to the
origin in timets. However, due to the estimation error
induced by the measurement noise, the true state will
follow the solution

3
X(t3) = P x(t,) + f ePIu(r)dr,
t2
wherets was calculated from (16) so that

{3
P D(ty) f e Mudr=0,  (35)
t2

and thus the final state will deviate from the origin as
X(ts) = PSR (X(ty) — R(t)) = 5 DAX,.  (36)

Proposition 4.(Bound on final state). Consider the sys-
tem (8) with measured output (31), with(t)] < 7,

and initial statexg, %] < kh. Then, assuming that

U > phk(k + 1)/(h - 27), the final state error after
one cycle of LCS estimatigoontrol satisfies

1 2nh(k + 1)
M) < — ey Thoa @D
S uUh-29

wherets is computed with (16) withg from (32).
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PROOF. Since x(ty) = ePtxy, operating on Equa- PROOF. Once the state reaches the first quantization
tions (33) and (34), the estimation errortatcan be  interval, in successive cyclg&(t;)] = 2h and thus

written as IX(t2)] < 2h + 5, which yields the ultimate bound (40).
_ This implies that
M= i < p 2
v o7 IX(ts)l < —5=(2h +17)
= 1A%l < == IX(®)l. (38) _ o N
n From this worst case final state value, the minimum
Replacing (38) in (36), and using?®%) = 1/(1 - time for the output to reach the valuén Zi.e., to
px(t2)/U) andx(ty) = eP2xy = (k+1)hyields (37). O complete a new estimation cycle) is
At:E og(Zh_zh_—_ZU). (42)
5.3 Stability and ultimate bounds after successive p 2h+n 29
LCS estimatiofontrol cycles Since forU arbitrarily large the control action reduces

) 2 ] to an pulse with very short duration, the lowest data
WhenU is much larger thaph*(k + 1)/(h — 217) in 540 will tend to be bounded by/At (2 bits for

(37), after one cycle of estimati@ontrol the state  ggimation+ 2 bits for control, over a time lapse of

IX¢] = [X(t3)| is approximately bounded byx,|. If at leastAt), which yields (41). o
we takex; as initial state for a new estimati@ontrol
cycle, and continue successively to drive the state near

the origin, we should ask tha(ts)| < [x(t2)] — 2h. Proposition 5 shows that the successive application of
Using the bound (37), we obtain the condition LCS estimatiofcontrol cycles can drive the state to a
o neighborhood of the origin, whose size is given by the
IX(ta)l < = 2 IX(t2)] < IX(t2)] - 2h, level of noise and the quantization interval.
and then it results that
X(t)| > th—_i"_ (39) 6. CONCLUSIONS
-

Thusﬁ, whenever the relationship (39) betweén), h This paper presented preliminary results that relax as-
andn is achieved, the control cycle will drive the state sumptions in a level-crossing sampling control strat-
below|x(t2)| - 2h (i.e., at least one level below). Of  egy introduced in Kofman and Braslavsky (2006). For

course, it is impossible to achieve this faftz)| < 2h, simplicity, these results were presented for a first order
since we need at least two samples to estimate thesystem, We have shown that practical stability can
state. be achieved with the proposed control strategy un-

der quantized sampling time information and bounded
measurement noise. Ultimate bounds and conditions
for closed-loop stability have been derived. Extension
of these results to higher order systems are currently
The strongest stability condition that we can ask is under development.

that the state reaches tfilst quantization level after a

number estimatigicontrol cycles. To do that, we need
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