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†Laboratorio de Sistemas Dinámicos. FCEIA – UNR – CONICET.
Riobamba 245 bis – (2000) Rosario – Argentina – Email: kofman@fceia.unr.edu.ar

Abstract— This paper presents a new
method for estimating the ultimate bound in
perturbed systems. The methodology, ex-
ploiting the perturbation structure and the
system geometry, gives an implicit expression
of the ultimate bound which can be solved by
fixed point iterations. Thus, it is simpler than
the classic Lyapunov analysis and, in many
cases, less conservative.
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I INTRODUCTION

The effects of perturbations are a common issue re-
lated to the study an analysis of dynamical systems.
Perturbations could result from modeling errors, ag-
ing or uncertainties and disturbances which exist in
any realistic problem (Khalil, 1996).

In a typical situation, the perturbation is unknown
but it is supposed to be bounded in some way. In
presence of non-vanishing perturbations –i.e., per-
turbations that do not disappear when the state go
to the equilibrium point– asymptotic stability is not
possible. However, under certain conditions, the ul-
timately boundedness of the trajectories can be guar-
anteed.

Non-vanishing perturbations can represent ef-
fects of quantization in A/D and D/A convert-
ers (Kofman, 2003), unknown disturbance signals
(Koskouej and Zinober, 2000), unmodeled dynam-
ics (Lee et al., 1998), data rate limitations in net-
worked control systems (Walsh et al., 2002; Elia
and Mitter, 2001), errors in numerical methods
(Kofman, 2002a), etc. In all those problems, it is
always important estimating the ultimate bound as
a measure of the undesirable effect of the perturba-
tions.

The usual tool for the estimation is based on the
use of Lyapunov functions (Khalil, 1996), but it has
the drawback that the resulting bound may be very
conservative due to the loss of the system and per-
turbation structure during a generic analysis.

A different approach was introduced in (Kofman,
2002b) where the ultimate bound of a linear time in-
varying (LTI) system with a perturbation bounded
by a constant was deduced based on geometrical

principles. That study arrived to an explicit expres-
sion for the ultimate bound that, in the examples
analyzed, was noticeably less conservative than what
can be obtained with Lyapunov.

This work extends that approach to the LTI case
where the perturbation is bounded by a function de-
pending on the state and then to nonlinear systems.
In both cases, the ultimate bound estimation is ex-
pressed as the solution of a fixed point problem. An
estimation of the region of attraction is also provided
by the methodology.

The examples analyzed illustrate the advantages
of the methodology in terms of simplicity and the
non conservative features of the estimation.

II PRELIMINARIES

A Notation

The symbol | · | will indicate the component-wise
module of a matrix or vector. If T is a matrix with
components T1,1, . . . , Tn,m, then |T | will be a new
matrix of the same size than T with components
|T1,1|, . . . , |Tn,m|.

For vectors having the same dimension, the vec-
tor inequality x ≤ y implies that xi ≤ yi for every
component of x and y.

According to these definitions, it results that |T ·
x| ≤ |T | · |x|.
B State Independent Perturbations

The analysis presented in (Kofman, 2002b) gives an
estimation of the ultimate bound of a LTI system
with state and input perturbations. Here, state per-
turbations will not be considered since they can be
represented by equivalent input perturbations.

In order to deal with nonlinear systems, it will be
also necessary to establish estimations of the region
of attraction.

Thus, the results of (Kofman, 2002b) will be
derived again taking into account the mentioned
changes.

The following lemma and its corollary allow de-
ducing Theorems 1 and 2, which establish the ulti-
mate bound of a LTI system with input perturba-
tions bounded component-wise by a constant vector.
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Lemma 1. Consider the following first order equa-
tion with complex coefficient

ż = a · z(t) + v(t) (1)

where a, z, v ∈ C. Assume that Re(a) < 0, |v(t)| ≤
vm ∀t ≥ 0 and define zm � |Re(a)−1| · vm.

Then, the condition |z(0)| ≤ zm implies that
|z(t)| ≤ zm, ∀t ≥ 0.

Proof. Let z � ρ · ejθ with ρ, θ ∈ R. Replacing and
operating equation (1) becomes

ρ̇+ jρ · θ̇ = aρ+ v · e−jθ

Taking the real part it results that

ρ̇ = Re(a)ρ+ Re(v · e−jθ) ≤ Re(a)ρ+ vm

Thus, when
ρ = |z(t)| = zm

it results that ρ̇ ≤ 0 and |z(t)| cannot become greater
than the given bound.

Applying Lemma 1 to each component of a decou-
pled system, the following corollary is obtained

Corollary 1. Consider the system

ż(t) = Λ · z(t) + v(t) (2)

where z, v ∈ Cn and Λ ∈ Cn×n.
Assume that Λ is a diagonal matrix with

Re(Λi,i) < 0 and suppose that |v(t)| ≤ vm, ∀t ≥ 0.
Define zm � |Re(Λ)−1| · vm.

Then, the condition |z(0)| ≤ zm implies that
|z(t)| ≤ zm, ∀t ≥ 0.

The non–diagonal can be analyzed as follows.

Theorem 1. Consider the system

ẋ(t) = A · x(t) + u(t) (3)

where x, u ∈ R
n, and A ∈ Rn×n is Hurwitz and

diagonalizable.
Let Λ, V be a pair of eigenvalues and eigenvectors

matrices, so that Λ = V −1A · V is diagonal.
Suppose that |u(t)| ≤ um. Then, the condition

|V −1 · x(0)| ≤ |Re(Λ)−1| · |V −1| · um

implies that

|x(t)| ≤ |V | · |Re(Λ)−1| · |V −1| · um ∀t ≥ 0

Proof. Let x(t) = V ·z(t). Then, system (3) becomes

ż(t) = Λ · z(t) + V −1u(t)

which has the form of (2) with v(t) � V −1u(t). No-
tice also that

|v(t)| ≤ |V −1| · um

According to Corollary 1, the condition

|z(0)| = |V −1x(0)| ≤ |Re(Λ)−1| · |V −1| · um

implies that

|z(t)| ≤ |Re(Λ)−1| · |V −1| · um ∀t (4)

and then

|x(t)| ≤ |V | · |z(t)| ≤ |V | · |Re(Λ)−1| · |V −1| · um

which completes the proof.

This last result can be extended to arbitrary initial
conditions as follows

Theorem 2. Consider system (3) under the same
hypothesis of Theorem 1.

Then, for any arbitrary initial condition x0 and a
positive vector ε ∈ Rn, a finite time t1 exists so that

|x(t)| ≤ |V | · |Re(Λ)−1| · |V −1| · um + ε ∀t > t1 (5)

Proof. Consider the system

ẏ(t) = A · y(t) (6)

with y(0) = x(0) = x0. Since A is Hurwitz,
limt→∞y(t) = 0 and then a finite time t1 exists so
that

|y(t)| ≤ ε ∀t > t1

Define x̃(t) � x(t)−y(t). Then, subtracting (6) from
(3) we have

˙̃x(t) = A · x̃(t) + u(t)

with x̃(0) = 0. Thus, this last system verifies Theo-
rem 1 and it results that

x̃(t) ≤ |V | · |Re(Λ)−1| · |V −1| · um ∀t ≥ 0

and

|x(t)| ≤ |x̃(t)| + |y(t)|
≤ |V | · |Re(Λ)−1| · |V −1| · um + ε

∀t > t1 completing the proof

These theorems give explicit estimations of the ul-
timate bound of LTI systems where the perturbation
bound does not depend on the state.

A less conservative estimation can be obtained
from (4), which implies that

|V −1x(t)| ≤ |Re(Λ)−1| · |V −1| · um ∀t (7)

Although it is less conservative, the explicit form is
lost in this inequality.
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III MAIN RESULTS

A State Dependent Perturbations (LTI)

Theorem 3. Consider system (3) under the same
hypothesis than before, except that now

|u(t)| ≤ δ(x(t)) ∀t ≥ 0

where δ : Rn → Rn is a continuous map verifying

|x1| < |x2| ⇒ δ(x1) < δ(x2) (8)

Define

T (x) � |V | · |Re(Λ)−1| · |V −1| · δ(x) (9)

Let us suppose that T (x) is a contraction mapping
in an open region D and let b be its unique fixed point
in that region, i.e., b = T (b). Then,

1. If |V −1x(0)| ≤ |Re(Λ)−1| · |V −1| · δ(b) it results
that |x(t)| ≤ b ∀t ≥ 0.

2. Let xm ∈ D so that T (xm) < |xm|. If
|V −1x(0)| ≤ |Re(Λ)−1| · |V −1| · δ(xm) then, given
a positive vector ε ∈ Rn, a finite time tf exists so
that

|x(t)| < b+ ε ∀t > tf

Proof. Let us define x0 � x(0).

1. First of all notice that

|x0| = |V · V −1x0| ≤ |V | · |V −1x0|
≤ |V | · |Re(Λ)−1| · |V −1| · δ(b) = T (b) = b

Let c > 0 be a scalar sufficiently small so that (1 +
c)b ∈ D. Let tc > 0 be the first instant of time in
which the inequality |x(t)| ≤ (1 + c)b becomes false.
Then, in the interval (0, tc) we have

|x(t)| ≤ (1 + c)b⇒ |u(t)| ≤ δ[(1 + c)b]

Applying Theorem 1, it implies that

|x(t)| ≤ |V |·|Re(Λ)−1|·|V −1|·δ[(1+c)b] = T [(1+c)b]

in (0, tc).
Since T is contractive, T [(1 + c)b] ∈ D. Moreover,

the property of δ(x) given by (8) implies that b =
T (b) < T [(1 + c)b] and then

|V −1x(0)| ≤ |Re(Λ)−1| · |V −1| · δ(b)
< |Re(Λ)−1| · |V −1| · δ(T [(1 + c)b])

Thus, we can repeat the analysis concluding that

|x(t)| < T (T [(1 + c)b]) ∀0 ≤ t < tc

The recursive use of this procedure concludes that

|x(t)| < b ∀t ∈ [0, tc)

since b is the fixed point of T in D. Then, the con-
tinuity of x(t) ensures that |x(tc)| ≤ (1 + c)b for any
positive constant c contradicting the initial assump-
tion that in tc the inequality was false.

2. Let c > 0 be a scalar sufficiently small so that
(1 + c)T (xm) ≤ |xm|. We have,

|x0| = |V · V −1x0| ≤ |V | · |V −1x0|
≤ |V | · |Re(Λ)−1| · |V −1| · δ(xm) = T (xm)

≤ |xm|
1 + c

Let tc > 0 be the first instant of time in which
the inequality |x(t)| ≤ |xm| becomes false. Thus, in
[0, tc) we have

|x(t)| ≤ |xm| ⇒ |u(t)| ≤ δ(xm)

Applying Theorem 1, it implies that

|x(t)| ≤ T (xm) ≤ |xm|
1 + c

in [0, tc). Then, we can ensure that |x(tc)| ≤ |xm|
contradicting the initial assumption. Thus,

|x(t)| ≤ |xm| ∀t ≥ 0

and |u(t)| ≤ δ(xm)∀t ≥ 0
Then, Theorem 2 concludes that, given a positive

vector γ ∈ Rn, a finite time t1 exist so that

|x(t)| ≤ |V | · |Re(Λ)−1| · |V −1| · δ(xm) + γ

= T (xm) + γ ∀t > t1

Then, when t > t1 it is also true that |u(t)| ≤
δ(T (xm) + γ). Applying again Theorem 2 we con-
clude that a positive time t2 exists so that

|x(t)| ≤ T (T (xm) + γ) + γ ∀t > t1 + t2

Defining Tγ(x) � T (x) + γ and T
(k)
γ = Tγ(T (k−1)

γ )
the recursive use of this procedure arrives at

|x(t)| ≤ T (k)
γ (xm) ∀t >

k∑
i=1

ti

Since Tγ(xm) = T (xm) + γ and T (xm) < xm, taking
γ enough small it results that

T (xm) < Tγ(xm) < xm

The property of T ensures also that

T (T (xm)) < T (Tγ(xm)) < T (xm) ⇒
T (T (xm)) < T (Tγ(xm)) + γ < T (xm) + γ

and
T (2)(xm) < T (2)

γ (xm) < Tγ(xm)

Thus, applying this recursively we have that

b < T (k)(xm) < T (k)
γ (xm) < T (k−1)

γ (xm)

Clearly, the succession T
(k)
γ (xm) is monotonic de-

creasing and has a lower bound b given by the fixed
point of T . Thus, it converges to certain point bγ .
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The continuity of T also ensures that

lim
γ→0

bγ = b

Then, given ε > 0, a value of γ > 0 can be found so
that bγ < b+ ε/2.

On the other hand, as

lim
k→∞

T (k)
γ (xm) = bγ

given ε > 0, a natural number N can be found so
that

T (k)
γ (xm) < bγ +

ε

2
∀k ≥ N

Then,

|x(t)| ≤ T (N)
γ (xm) < bγ +

ε

2
< b+ ε ∀t >

N∑
i=1

ti

which completes the proof.

A less conservative estimation of the ultimate
bound can be obtained using (7), which yields,

|V −1x(t)| ≤ |Re(Λ)−1| · |V −1| · δ(b) ∀t
Also, the estimation of the region of attraction might
result conservative. Notice that when δ(x) is small,
the estimation is also small. However a function like
δ(x) + δ1 with δ1 > 0 is also a bound for |u(t)| and
it can result in a bigger estimation of the region.

In fact, if a positive vector δ1 satisfies

|V | · |Re(Λ)−1| · |V −1| · δ1 < xm − T (xm)

then we can use δ(x)+δ1 instead of δ(x) to prove that
|x(t)| ≤ xm ∀t ≥ 0 and then the region of attraction
is defined by

|V −1x(0)| ≤ |Re(Λ)−1| · |V −1| · (δ(xm) + δ1)

B Application to Nonlinear Systems

Consider a nonlinear system

ẋ(t) = f(x(t), u(t))

where the origin with u(t) = 0 is an exponentially
stable equilibrium point.

Let us define

A � ∂f

∂x

∣∣∣∣
(0,0)

which is Hurwitz and we will suppose that it is also
diagonalizable.

We can rewrite,

ẋ(t) = Ax(t) + (f(x(t), u(t)) −Ax(t))

If we can find a function δ(x) so that

|f(x(t), u(t)) −Ax(t)| ≤ δ(x)

then we can use Theorem 3 to estimate the ultimate
bound and the region of attraction.

IV EXAMPLES

A Pendulum with perturbations

The system

ẋ1 = x2

ẋ2 = −sin(x1) − 10 · x2 + τ(t)

represents the dynamics of a pendulum with a big
friction coefficient. We shall assume that τ(t) is a
perturbation bounded by |τ(t)| ≤ τm.

The system can be rewritten as

ẋ =
[

0 1
−1 −10

]
· x+

[
0

x1 − sin(x1) + τ(t)

]

which has the form A · x + u(t). The perturbation
term can be bounded by

|u(t)| ≤ δ(x) �
[

0
τm + |x1|3

6

]

Defining R � |V | · |ReΛ−1| · |V −1|, the map T , ac-
cording to (9), is T (x) = R · δ(x). Its fixed point can
be calculated as[

x1

x2

]
=

[
R12(τm + |x1|3

6 )
R22(τm + |x1|3

6 )

]

Let us suppose that τm = 0.1. Then the least positive
solution of the equation is given by x1 = 0.102243
and x2 = 0.020448. If that point is inside a region in
which T (x) is a contraction then

|x(t)| ≤
[
0.102243
0.020448

]

The contraction property of map T can be easily
verified for 0 ≤ x1 < 1.95 and for all x2. Thus, the
ultimate bound calculated holds.

An even less conservative estimation is given by

|V −1x(t)| ≤ |Re(Λ)−1| · |V −1| · δ(b) =
[
0.1017
0.0103

]

Let us try to obtain a similar result with Lya-
punov.

A quadratic Lyapunov function with level surfaces
that fit the form of the ultimate bound previously
obtained is

U(x) = x2
1 + 5x2

2 + x1x2

with derivative

U̇(x) = −x1sin(x1) − 99x2
2 − 8x1x2 −

−10x2sin(x1) + (x1 + 10x2)τ(t)

In this case, if we put x1 = 0.1462 and x2 = −0.083
we get that U(x) = 0.0205 and U̇(x) = 2.02×10−6 >
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0 and it is impossible to ensure that the solutions
finish inside the region {x|U(x) ≤ 0.0205}.

The maximum value of x1 on U(x) = 0.0205
is 0.1469 while de maximum value of x2 is 0.0657
which are both considerable bigger than what was
obtained with the new method. Figure 1 compares
the bounds.
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|V −1x(t)| ≤ [0.1017, 0.0103]T

U(x) = 0.0205

Figure 1: Lyapunov and contraction bounds in the
pendulum system

B Khalil’s example

System

ẋ1 = x2

ẋ2 = −4 · x1 − 2 · x2 + βx3
2 + d(t)

where 0 ≤ β ≤ 0.4(1 − ξ)/c and |d(t)| ≤ dm was
introduced in (Khalil, 1996) to establish its ultimate
bound. The result was

‖x‖2 ≤
√

29λmax(P )dm

8ψθ
√
λmin(P )

(10)

where xTPx is the Lyapunov function of the nominal
system and 0 < θ < 1.

For parameters ξ = 0.5, dm = 1, and c = 2.75 the
minimum bound (making θ = 1) using the Lyapunov
function provided there is 3.026 (in norm 2).

The new methodology, in this case, gives b =
[0.5777 1.1554]T (using Matlab’s eigenvalues and
eigenvectors). The bound is again sensibly better.

Besides being more conservative, finding the ap-
propriate Lyapunov function and evaluating its
derivative along several level surfaces until being sure
that it is negative is a difficult task, even for a sim-
ple second order system like the one studied. Any
attempt to generalize this Lyapunov analysis obtain-
ing a kind of formula would imply the lost of the
problem structure yielding more conservative results.
Eq.(10) is a typical expression of this sort (with the
ratio of the eigenvalues of P ) and, as it was shown

in (Kofman, 2002b) and verified in the last example,
it is conservative.

On the contrary, the new methodology can be eas-
ily programmed (it takes a few lines of Matlab code).
Besides some matrix operations, the calculation of
the bound only involves the solution of an equation of
the form b = T (b) which can be solved by fixed point
iterations. Moreover, if the iterations start from a
point in which T (b) < b, the value obtained after
any number of iterations gives an estimation of the
ultimate bound.

V CONCLUSIONS

A new method to estimate the ultimate bound
of linear and nonlinear systems was presented.
The method provides an alternative to the classic
Lyapunov based analysis, resulting simpler and –
sometimes– less conservative.

A disadvantage of the methodology, which should
be consider for future research, is that it is unable
to exploit the presence of stabilizing nonlinear terms
(it treats any nonlinearity as perturbation).

Another case that was not yet considered is the
non–diagonalizable one.

Finally, applications of the method to different
practical problems should be studied. Particularly,
we believe that its use to study the effects of quan-
tization in sampled data control systems can im-
prove the existing results, which are mainly based
on Lyapunov theory (Ishii and Francis, 2003; Bullo
and Liberzon, 2003).
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