
XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

A THIRD ORDER DISCRETE EVENT METHOD FOR

CONTINUOUS SYSTEM SIMULATION
Part II: Applications

Ernesto KOFMAN†

†Laboratorio de Sistemas Dinámicos. FCEIA – UNR – CONICET.
Riobamba 245 bis – (2000) Rosario – Argentina

Email: kofman@fceia.unr.edu.ar

Abstract— This work discusses practical is-
sues and applications of the QSS3 method
introduced in the companion paper. The
method rules are translated into a discrete
event model within the DEVS formalism and
implemented in a simulation software. The
method is then tested with the simulation of
two relatively complex hybrid systems and
the results are then compared with all Mat-
lab/Simulink ODE solvers. These experi-
ments show a noticeable reduction of the com-
putational costs.

Keywords— Hybrid systems, ODE inte-
gration, Discrete Event Systems.

I INTRODUCTION

Quantization based methods for numerical integra-
tion of ordinary differential equations exhibit theo-
retical and practical features which, in some cases,
constitute important advantages over classic numer-
ical methods.

Starting from the idea of quantizing the state
space instead of discretizing the time (Zeigler and
Lee, 1998), the addition of hysteresis to the quantiza-
tion resulted in the formalization of the first numer-
ical method of this kind (Kofman and Junco, 2001).
Performing a first order approximation, QSS showed
some strong theoretical and practical qualities but it
was limited in accuracy.

Its second order successor QSS2 (Kofman, 2002)
partially solved this problem exhibiting now very
important advantages in discontinuous systems
(Kofman, 2004).

However, being a second order method, QSS2 sen-
sibly increases the computational costs when an im-
portant accuracy is requested. Moreover, as the
number of steps depends on the square root of the
quantization, its election is still quite critical.

These facts motivated the development of a third
order method called QSS3 that was introduced in
the companion paper (Kofman, 2005). There, it was
shown that the number of steps depends on the in-

verse of the cubic root of the quantum, which means
that the quantum can be decreased without a signif-
icant increment of the computational costs. Thus,
the accuracy can be improved and the quantization
choice is not as critical as before.

This paper treats the practical issues of the QSS3
method. Like QSS and QSS2, this new method
transforms a set of differential equations into a dis-
crete event model within the DEVS formalism frame-
work (Zeigler, 1976; Zeigler et al., 2000). In the three
cases, the resulting DEVS model can be divided in
quantized integrators and static functions.

Taking into account the relationship between the
piecewise parabolic trajectories at the input and out-
put of quantized integrators and static functions de-
duced in (Kofman, 2005), the corresponding DEVS
atomic models are built. After programming the
resulting models in PowerDEVS (Pagliero and La-
padula, 2002), the QSS3 method can be applied in
the same way than QSS or QSS2, i.e., building the
system block diagram.

Finally, the method is used in the simulation of two
complex hybrid examples and the results are com-
pared with what is obtained using all the methods
implemented in Matlab/Simulink. This will show
that QSS3 method is a particularly efficient algo-
rithm for accurate simulation of strongly discontinu-
ous systems.

II QUANTIZATION AND DEVS

QSS, QSS2 and QSS3 methods produce simulation
models which cannot be expressed by difference
equations as classic discrete time algorithms. As it
was already mentioned, the simulation models can
be represented by DEVS.

A DEVS formalism

The DEVS formalism was developed by Zeigler in
the mid–seventies (Zeigler, 1976; Zeigler et al., 2000).
DEVS allows one to represent all the systems whose
input/output behavior can be described by sequence
of events, with the condition that the state has a
finite number of changes in any finite interval of time.



XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

A DEVS model processes an input event trajectory
and –according to that trajectory and to its own ini-
tial conditions– provokes an output event trajectory.

Formally, a DEVS atomic model is defined by the
following structure:

M = (X, Y, S, δint, δext, λ, ta),

where

• X is the set of input event values, i.e., the set
of all the values that an input event can take;

• Y is the set of output event values;

• S is the set of state values;

• δint, δext, λ and ta are functions which define
the system dynamics.

Each possible state s (s ∈ S) has an associated
time advance calculated by the time advance func-
tion ta(s) (ta(s) : S → R

+
0 ). The time advance is a

nonnegative real number saying how long the system
remains in a given state in absence of input events.

Thus, if the state adopts the value s1 at time t1,
after ta(s1) units of time (i.e., at time ta(s1) + t1)
the system performs an internal transition, going to
a new state s2. The new state is calculated as s2 =
δint(s1), where δint (δint : S → S) is called internal
transition function.

When the state goes from s1 to s2 an output event
is produced with value y1 = λ(s1), where λ (λ : S →
Y ) is called output function. Functions ta, δint, and
λ define the autonomous behavior of a DEVS model.

When an input event arrives, the state changes
instantaneously. The new state value depends not
only on the input event value but also on the previous
state value and the elapsed time since the last transi-
tion. If the system goes to the state s3 at time t3 and
then an input event arrives at time t3 + e with value
x1, the new state is calculated as s4 = δext(s3, e, x1)
(note that ta(s3) > e). In this case, we say that
the system performs an external transition. Func-
tion δext (δext : S ×R

+
0 ×X → S) is called the exter-

nal transition function. No output event is produced
during an external transition.

DEVS models can be coupled. One of the most
used coupling schemes for DEVS models includes the
use of ports. Here, the external transition functions
of the atomic models distinguish the value and arrival
port of the events to calculate the next state. Sim-
ilarly, the output functions produce output events
which carry a value through a given port. Then the
coupling basically consists in connections from out-
put ports to input ports of different atomic models.

B DEVS and Quantized State Systems

Given a set of state equations of the form

ẋ1(t) = f1(x1, · · · , xn, u1, · · · , um)
...

ẋn(t) = fn(x1, · · · , xn, u1, · · · , um)

The QSS method approximates it by

ẋ1(t) = f1(q1, · · · , qn, u1, · · · , um)
... (1)

ẋn(t) = fn(q1, · · · , qn, u1, · · · , um)

where qi and xi are related by a hysteretic quanti-
zation function (Kofman and Junco, 2001). Conse-
quently, qi is piecewise constant.

We can think each equation in (1) as the coupling
of two elementary subsystems. A static one

di(t) = fi(q1, · · · , qn, u1, · · · , um) (2)

and the dynamic

qi(t) = Qi(xi(·)) = Qi(
∫

di(τ)dτ) (3)

where Qi is the hysteretic quantization function (it
is not a function of the point xi(t) but a functional
over the trajectory xi(·)).

Provided that the components ui are piecewise
constant, the output of subsystem (2), i.e., di, is
piecewise constant. Thus, both subsystems have
piecewise constant input and output trajectories.

A piecewise constant trajectory has the form

v(t) = vk tk ≤ t < tk+1 (4)

and it can be represented by a sequence of events
with the value vk at time tk.

The subsystems (2) and (3) implicitly define a rela-
tionship between their equivalent input and output
sequences of events. Thus, equivalent DEVS mod-
els to these subsystems can be found. These DEVS
models are called static functions and quantized in-
tegrators respectively.

Similar remarks can be done with respect to the
second order method QSS2. Here, as the trajectories
are piecewise linear instead of piecewise constant, the
events take the value in R

2 with the initial value and
the slope of each section of line.

The mentioned DEVS atomic models can be found
in (Kofman, 2004).

III DEVS MODELS OF QSS3

In the companion paper (Kofman, 2005) it was
proven that static functions (2) and quantized inte-
grators (3) have piecewise parabolic input and out-
put trajectories (in the nonlinear case the higher or-
der terms were discarded to that goal).

There, the relationship between those inputs and
outputs was deduced. Now, these relations will be
expressed in terms of the DEVS formalism.



XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

A Third order quantized integrator

The piecewise parabolic input trajectory of the quan-
tized integrator1 –d(t)– can be represented by a se-
quence of events with values in R

3, a triplet (dk, mdk
,

pdk
).

The state variable, x(t), is the integral of d(t) and
can be calculated from the previous sequence.

The quantized variable, q(t), constitutes the out-
put of the subsystem and, like the input, it can be
characterized by a sequence of events (qj , mqj , pqj ).

According to the definition of a second order quan-
tization function (Kofman, 2005), q(t) starts a new
parabolic section when it differs from x(t) in ∆q (see
Fig.1). In those event times, q(t) takes the value and
the first and second derivative of x(t).

∆q

∆q

Input
Output

Figure 1: Input and output of a second order quan-
tizer

The DEVS model was then built so that the state
keeps the values of d, x and q. When d starts a new
section of parabola (input events) or q starts a new
section of parabola (output events), x, q and d are
updated and variable σ (time advance, or time to
next output event) is recalculated. Being the time
to the next change in the quantized variable, σ is
calculated as the elapsed time until q and x differ by
∆q.

Calling s, s̃ and ŝ to the current state, the state
after an internal transition and the state after an
external transition respectively, so that

s = (d, md, pd, x, q, mq, pq, σ)

s̃ = (d̃, m̃d, p̃d, x̃, q̃, m̃q, p̃q, σ̃)

ŝ = (d̂, m̂d, p̂d, x̂, q̂, m̂q, p̂q, σ̂)

the DEVS model can be expressed by

MQI3 = (X, S, Y, δint, δext, λ, ta), where
X = R

3 × {inport}; S = R
7 × R

+
0 ∞,

Y = R
3 × {outport},

δint(s) = s̃; δext(s, e, v, mv, pv, port) = ŝ

λ(s) = (q̃, m̃q, p̃q, outport); ta(s) = σ,

1the sub–index i was eliminated to simplify the notation

with

d̃ = d + mdσ + pdσ
2, m̃d = md + 2pdσ

x̃ = x + d · σ +
md

2
σ2 +

pd

3
σ3

q̃ = x̃; m̃q = d̃; p̃q = m̃d

σ̃ =

⎧⎨
⎩

3

√
3∆q
p̃d

if p̃d �= 0,

∞ otherwise,

and

d̂ = v; m̂d = mv; p̂d = pv

x̂ = x + d · e +
md

2
e2 +

pd

3
e3

q̂ = q + mqe + pqe
2, m̂q = mq + pqe

Finally, σ̂ is the least positive solution of

|pv

3
σ3 +(

mv

2
− p̂q)σ2 +(v− m̂q)σ + x̂− q̂| = ∆q (5)

It can be easily seen that in this DEVS model x is
the integral of d and q is the quantized version of x.
Thus, this model is equivalent to a subsystem like
(3) provided that di is piecewise parabolic.

B Static functions

Defining v � (x1, · · · , xn, u1, · · · , un), the linear ver-
sion of (2) can be rewritten as

di =
N�n+m∑

j=1

cj · vj (6)

Since vj(t) are piecewise parabolic, they can be rep-
resented by sequences of events with values (vjk

,
mvj,k

, pvj,k
). As is was seen in (Kofman, 2005), the

output di(t) is also piecewise parabolic and the cor-
responding sequence of events (dik

, mdi,k
, pdi,k

) can
be calculated with (6) using the fact that the deriva-
tives satisfy the same equation.

The DEVS model keeps the input values vj , mvj ,
pvj as well as the output di, mdi, pdi . The model has
N input ports and when an input event arrives by
the port j, the corresponding vj , mvj and pvj take
the input event value, while the rest of the input
values are updated according to the elapsed time.
The output values is then calculated with (6) and
the time advance is set to 0 so that an output event
occurs. After the corresponding internal transition,
the time advance is set to ∞ so that no output event
occur until the next event arrives.

Defining s � (v, mv, pv, d, md, pd, σ) the DEVS
model can be expressed by

MST = (X, S, Y, δint, δext, λ, ta), where
X = R

3 × {inport1, · · · , inportN},
S = (RN+1)3 × R

+
0 ∞, Y = R

3 × {outport},
δint(s) = (v, mv, pv, d, md, pd,∞)

δext(s, e, u, mu, pu, port) = (v̂, m̂v, p̂v, d̂, m̂d, p̂d, 0)
λ(s) = (d, md, pd, outport), ta(s) = σ,



XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

where, if j = port,

(v̂j , m̂vj , p̂vj) = (u, mu, pu)

and, when j �= port

v̂j = vj + mvj e + pvj e
2

m̂vj = mvj + pvj e, p̂vj = pvj

The output is calculated as

d̂ =
N∑

j=1

cj v̂j , m̂d =
N∑

j=1

cj · m̂vj , p̂d =
N∑

j=1

cj · p̂vj

(7)
This DEVS model can be also used for nonlinear
functions. The only change that has to be made is in
the calculations of (7), where the partial derivatives
must be considered according to what was developed
in (Kofman, 2005).

C Input signals

The incorporation of input signals in QSS3 does
not differ from QSS and QSS2. The only differ-
ence is that now we are allowed to consider piece-
wise parabolic approximations, which can reduce the
number sections (and the number of events) with re-
spect to the piecewise constant and linear signals of
QSS and QSS2.

Thus, the corresponding signal sources of QSS3
will be just DEVS generators which provoke events
with the successive values of ui(t) (and their first and
second derivatives).

D Discontinuity handling

Discontinuities can be managed in a similar way to
QSS2. There, the discontinuity conditions were pre-
dicted by looking at the piecewise parabolic evolution
of the state x(t) (Kofman, 2004). Here, taking into
account that a smaller quantization will be used, it is
convenient to observe directly the quantized variable
q(t) in order to avoid solving a cubic equation.

Some examples including blocks with discontinuity
detection capabilities will be discussed in Section IV.

E PowerDEVS implementation

The DEVS models described (quantized integra-
tor, static functions and some generators and dif-
ferent discontinuous models) were programmed as
new blocks of the simulator PowerDEVS (Pagliero
and Lapadula, 2002) and organized in a new library
called qss3. In that way, QSS3 simulations can be
performed by using these blocks to draw the system
block diagram.

The features of PowerDEVS permit to change the
parameters like the quantum and initial state of the
integrators and the coefficients of static functions by
double clicking at the corresponding blocks.

Thus, the implementation of the QSS3 simulation
becomes transparent to the end user of PowerDEVS.

The next section presents simulation results ob-
tained with the mentioned library of PowerDEVS,
showing also the way in which the software environ-
ment is used.

IV EXAMPLES

A DC motor with PWM control

We consider in this example a DC motor with con-
stant field, described by the equations

dia

dt
=

1
La

(Ua(t) − Raia − kmω)

dω

dt
=

1
J

(kmia − bmω − τ(t))

where ia(t) and ω(t) are the armature current and
the angular speed of the motor.

The inputs Ua(t) and τ(t) are the armature volt-
age and load torque. The parameters La, Ra, km, J
and bm are the armature inductance and resistance,
the motor constant, the inertia, and the friction co-
efficient respectively.

A typical strategy to control the motor speed is
called pulse width modulation. The motor speed is
compared with a desired reference and then the ar-
mature voltage switches from a positive value (+V )
to a negative value (−V ) so that the duration of the
resulting pulses is proportional to the error.

A way of achieving this is comparing the error with
a triangular waveform (carrier wave) applying +V or
−V according to the sign of the difference.

Using the parameters corresponding to a real DC
motor: La = 0.003, Ra = 0.05, km = 6.783, Jm =
15, and bm = 0.005 we simulated the response of the
control system to a speed reference which goes from 0
to 60 with a rising time of 2 seconds. The DC motor
is initially unloaded (tau(0) = 0) and a step of 2500
is applied in t = 3. The triangular waveform was set
with a frequency of 1000Hz and an amplitude of 1.1

The PowerDEVS model is shown in Fig.2. There,
the blocks QSS3 Integrator and QSS3 Linear cor-
respond to the third order quantized integrator and
the linear static function described in the previous
section. The Triangular and Step blocks are simple
DEVS generators and the Saturation block bounds
the output between 1 and -1 (so that the error does
not becomes greater than the triangular wave, limit-
ing in that way the maximum duty cycle).

The SwitchTraj block compares the error and the
triangular wave, provoking events with values V or
−V when they become equal to each other. This
block predicts when the trajectories cross using the
fact that they are piecewise parabolic. Thus, the
discontinuities are exactly detected and handled.

For the simulation, a quantum of 0.001 was used in
both variables in order to appreciate the oscillations
of the speed and current.

The QSS3 method completed the simulation of the
first 5 seconds of the evolution after 7029 and 27572



XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

Figure 2: PowerDEVS model of a PWM control.

steps in the integrators which calculate ω and ia re-
spectively. Additionally, the block which produces
the triangular waveform provoked 10000 events (i.e.
2 events by period during 5 seconds of simulation)
and consequently, the switch produced 10000 com-
mutations. In that way, there were a total of 54600
events. 34600 events corresponded to the continuous
part and 20000 to the discrete part.

The simulation in PowerDEVS took 1.37 seconds
on 450MHz PC under Windows 98.

The results are shown in Figures 3–5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Time

ω
(t

)

Figure 3: Motor speed.

The experiment was repeated using the QSS2
method with the same quanta. Now, the number of
steps in the integrators was 17644 and 124021 in ω
and ıa respectively. The addition of the 10000 events
in the discrete subsystem gives a total of 161665
events. PowerDEVS needed 3.18 seconds to simu-
late the system on the same computer than before.

We tried to simulate the same system with
Simulink. The best results were obtained with
ode23s. In order to get a qualitatively good result
we needed to set the relative tolerance to 2 · 10−10

and the absolute tolerance to 10−7. The number of
steps was 186593 and the simulation took 21.75 sec-
onds.

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4
57

57.5

58

58.5

59

59.5

60

Time

ω
(t

)

Figure 4: Motor speed (transient after the torque
step).

4.98 4.982 4.984 4.986 4.988 4.99 4.992 4.994 4.996 4.998 5
355

360

365

370

375

380

385

Time

i a
(t

)

Figure 5: Armature current (final oscillations).

The number of steps performed by QSS3 was less
than the third part of the steps of ode23s. Besides
this, each step in QSS3 only involves a few calcula-
tions. The 10000 events given by the triangular wave
generator are only seen by the switch model which
decides when to apply +V or −V .

Similarly, the 10000 events given by the switch are
only seen by the integrator which calculates ia(t).
The 27572 steps of the integrator which calculates
ia(t) are only seen by itself and the other integrator.
The only expensive events are the 7029 given by the
integrator of ω(t) which are seen by both integrators
and the discrete subsystem.

This clearly explains the fact that the simulation
with PowerDEVS is much faster –about 15 times–
than the simulation with Matlab.

B A ball bouncing downstairs

Consider a ball moving in two dimensions (x and y)
bouncing downstairs. It will be assumed that the ball



XI Reunión de Trabajo en Procesamiento de la Información y Control, 21 al 23 de septiembre de 2005

has a model in the air –with the presence of friction–
and a different model in the floor (spring–damper).

A possible model is given by the set of equations

ẋ = vx, v̇x = −ba

m
vx, ẏ = vy

v̇y = −g − ba

m
vy −

− sw[
b

m
vy +

k

m
(y − int(h + 1 − x))]

where sw is equal to 1 in the floor and 0 in the air.
Function int(h + 1 − x) gives the height of the floor
at a given position (h is the height of the first step
and steps of 1m by 1m are considered).

The commutations (state events) are produced
when x and y verify y = int(h + 1 − x).

The system was simulated in PowerDEVS with the
QSS3 method. The block diagram was built in a
similar way to the previous example.

In this case, a quantum of 0.00001 was chosen for
the vertical position and 0.001 in the other variables.
The initial conditions where x(0) = 0.575, y(0) =
10.5, vx(0) = 0.5 and vy(0) = 0 and the first 10
seconds of the system evolution were simulated.

The QSS3 method performed 464, 346, 10 and 6
steps in the integrators which calculate y, vy, x and
vx respectively. Thus, there were a total of 826 steps.
PowerDEVS took about 0.033 seconds to complete
the simulation on a 450 MHz PC running under Win-
dows 98. The results are shown in Fig.6.

0.5 1 1.5 2 2.5 3 3.5 4
6.5

7

7.5

8

8.5

9

9.5

10

10.5

x(t)

y
(t

)

Figure 6: Ball bouncing downstairs (y vs. x).

The simulation with QSS2 and the same parame-
ters takes a total of 9346 steps which are performed
in 0.11 seconds on the same computer.

The simulation with variable step methods re-
quires using a relative and absolute tolerance un-
der 7 × 10−7. Otherwise, the methods skip events.
The best results with Matlab are obtained with the
ode23s method which performs 2960 steps and takes
0.27 seconds (also on the same computer). Again,

a noticeable reduction of simulation time was ob-
served.

V CONCLUSIONS

The DEVS implementation and some simulation re-
sults of the QSS3 method were presented. The sim-
ulations showed that QSS3 is an efficient algorithm
for accurate numerical integration of discontinuous
systems. In the cases analyzed, the simulation time
was drastically reduced with respect to what can be
obtained with Matlab/Simulink.

Besides testing the method in more examples, fu-
ture work should also consider the case of Differential
Algebraic Equations, since it was only analyzed for
QSS and QSS2 (Kofman, 2003).

QSS3 enlarged the family of quantization based in-
tegration methods. Although a fourth order method
can be deduced from the same principles, the need
of solving a fourth order equation might increase
computational costs without improving considerably
what QSS3 achieves.

REFERENCES

Kofman, E. (2002). A Second Order Approxima-
tion for DEVS Simulation of Continuous Systems.
Simulation 78(2), 76–89.

Kofman, E. and S. Junco (2001). Quantized State
Systems. A DEVS Approach for Continuous Sys-
tem Simulation. Transactions of SCS 18(3), 123–
132.

Kofman, Ernesto (2003). Quantization–Based Simu-
lation of Differential Algebraic Equation Systems.
Simulation 79(7), 363–376.

Kofman, Ernesto (2004). Discrete Event Simulation
of Hybrid Systems. SIAM Journal on Scientific
Computing 25(5), 1771–1797.

Kofman, Ernesto (2005). A Third Order Discrete
Event Simulation Method for Continuous System
Simulation. Part I: Theory. Technical Report
LSD0501. LSD, UNR. Submitted to RPIC’05.
Available at www.fceia.unr.edu.ar/∼kofman.

Pagliero, Esteban and Marcelo Lapadula (2002).
Herramienta Integrada de Modelado y Simulación
de Sistemas de Eventos Discretos. Diploma
Work. FCEIA, UNR, Argentina.

Zeigler, B. (1976). Theory of Modeling and Simula-
tion. John Wiley & Sons. New York.

Zeigler, B. and J.S. Lee (1998). Theory of quantized
systems: formal basis for DEVS/HLA distributed
simulation environment. In: SPIE Proceedings.
pp. 49–58.

Zeigler, B., T.G. Kim and H. Praehofer (2000). The-
ory of Modeling and Simulation. Second edition.
Academic Press. New York.


