
DEVS as Part of and Integrating Tool in a Course on System Dynamics.

Ernesto Kofman(1) and Sergio Junco(2)

kofman, sjunco @fceia.unr.edu.ar
(1), (2) Departamento de Electrónica, FCEIA, Universidad Nacional de Rosario, Argentina.

(1) CONICET.

Abstract

This paper describes the introduction of the DEVS
formalism in a course on System Dynamics in the
computer science career at the National University of
Rosario. The experience, which started in 2001,
attempts to show that DEVS can play an important role
not only in the context of discrete event modeling and
simulation but also as a tool which helps to integrate the
main concepts of general system theory in a language
which is familiar to computer science students. Besides
giving a detailed description of the concepts developed
in the course, we also present the lab works, homework
problems, and term project assigned to the students, as
well as the software tools used in the course.

Keywords: DEVS, System Dynamics, Education,
Differential Equations.

1. INTRODUCTION.

The DEVS formalism [Zeigler 1976] is one of the most
important tools in the context of discrete event modeling
and simulation. Its original scope has been extended in
several directions, among which the provision of a
unified framework for the representation of hybrid
systems [Praehofer 1991; Zeigler et al., 2000], and the
discrete-event modeling of numerical approximations of
differential equations [Zeigler and Lee 1998; Kofman
and Junco 2001] are the most relevant to this article.

This modeling and simulation paradigm is easy to
understand by students of computer science because of
several reasons: DEVS-models are described with a
language that looks like the grammars usual in automata
theory; the hierarchical structure of coupled DEVS-
models immediately reminds the main concepts of
object oriented programming; and most of the simple
examples often used to introduce DEVS come from the
computer science area (the classic queue and processor
system, for instance).

Being conceived within the realm of Systems Theory,
the general specification of DEVS is similar to the
axiomatic definition of continuous dynamical systems
[Kalman et al., 1969]. This fact allows for a quite
straightforward conceptual connection at the highest
level of abstraction between DEVS and state equations
models of continuous systems, when the latter are
considered in terms of the transition functions provided
by the formal solutions of the differential equations.

The above mentioned properties motivated us to
incorporate DEVS in the syllabus of an undergraduate
course in computer science that was originally intended
to give the students some exposure to the basic issues
of differential equations and their usage as models of
continuous dynamical systems. The goal was to transmit
–in the limited time-frame allotted to the course- the
specifics of continuous, discrete-time and discrete-event
dynamical systems, to present them as particular
instances of a more general concept of dynamical
system, and to simultaneously discuss some general
issues related to systems theory (like structure and
behavior, modularity, coupling, hierarchy, etc.).

This one-semester course starts with a concise
introduction to ordinary differential equations, including
basic techniques of quadrature and numerical
integration, and continues presenting the analysis of
dynamic systems in the state space (general solution of
the state equation, phase portraits, linearization,
Lyapunov stability theorems).

Matlab/Simulink-supported simulation labs are included
at this stage to provide confidence with numerical
methods and dynamical behavior. Then, the DEVS
formalism is introduced and, finally, all the concepts are
integrated together in a term project which consists in
the modeling and simulation of a complex hybrid
system. This hybrid system consists of an elevator
control system involving a DC-motor (which is modeled
by a Runge-Kutta approximation of its differential
equations), sensors, actuators, and an asynchronous
controller to be designed by the students in order to
meet a set of specified behavioral specifications. The
simulations are done using PowerDEVS [Kofman et al.,
2003], a software which is previously used in a practical
work by the students to simulate a simple “queue-
processor” system.

In that way, DEVS is used not only with modeling and
simulation purposes but also as a tool that helps to
generalize some system theoretical concepts, to make
the students familiar with classic numerical methods,
with automatic control issues and with the application of
system theory in realistic problems.

This paper describes in detail the mentioned course, its
lab-exercises and term projects in order to transmit the
experience to other professors and to open a discussion
about the advantages and disadvantages of introducing
DEVS in undergraduate courses.

2. DESCRIPTION OF THE COURSE.

The course begins with an introduction to differential
equations following a classic approach (theorem of
existence and uniqueness of solutions, first order
equations, order reduction , etc.) and goes on showing
their application to the study of continuous system
dynamics. Taking into account the background of the
students, the examples are mainly related to mechanical
systems.

After the basic definitions, the main techniques for
quadrature of first order differential equations are
introduced (separation of variables, linear equations,
homogeneous cases, Bernoulli equations, etc.).
Together with the reduction of order, state equations
and block diagrams are presented as alternative
representations of n-th order ordinary differential
equations, which are not further treated. A short
overview of the numerical approach to ODE-solving is
giving, wherby the most classical methods
approximations are presented (Euler, Runge-Kutta,
Predictor-Corrector methods including implicit and
variable step versions), and important issues are
discussed, like accuracy and stability, stiff systems and
some remarks about differential-algebraic equations.

These topics complete the first part of the course, which
is complemented with a lab work in which the students
simulate different systems of differential equations using
the Matlab/Simulink environment, including an example
consisting in a filter for audio signals. After a first middle
term exam evaluating all these subjects, we consider
that the students have acquired the necessary
background to be introduced into the basic concepts of
continuous system dynamics.

The second part of the course is intended to introduce
the basic tools for the analysis of dynamical systems in
the state space. It begins with the study of general
properties of the solution of (possibly) nonlinear, time-
varying state equations, with succesive restrictions to
the linear and linear time-invariant (LTI) cases. Next, for
second order LTI-systems, a detailed study of their state
space trajectories and invariant properties of their
eigenspaces is carried-out, emphasizing the role of the
evolution and transition matrices.

After that, the course comes back to nonlinear systems
showing how to analyze their local behavior around
equilibrium points. The technique of linearization is
introduced as a preambule to the first method of
Lyapunov for stability analysis and to the Hartman-
Grobman theorem for approximate trajectory
determination. Finally, the second method of Lyapunov,
complemented with the Invariance Principle of LaSalle,
is introduced.

This preview of the theory of continuous system
dynamics concludes with a lab work that involves the
analysis and simulation of different dynamical systems:
A Lotka-Volterra model, a pendulum, a nonlinear spring-
-mass system, a Van der Pol oscillator, an oxidation
process and a Duffing equation. In these examples the

students deal with most of the features which appear
related to continuous dynamical systems: multiple
equilibrium points; stable, marginally stable and unstable
equilibria; arriving to chaotic behavior in the (controlled)
Duffing example. A second middle term examination
evaluates this part of the course.

The last part of the course begins with an introduction to
the theory of systems starting from a review of the
general solution of the state equation. This is taken to
introduce the axiomatic definition of a continuous
dynamical system [Kalman et al., 1969] which is then
linked with the general definition of a dynamical system
[Zeigler et al., 2000].

This part is mainly based on Zeigler’s book “Theory of
Modelling and Simulation” and after treating the basic
concepts of system theory, the DEVS formalism is
introduced and developed.

The formalism is first presented in its atomic version,
including some classic examples like processors and
queues but also showing other examples which then
play a key role in the simulation of continous systems
like static functions and integrators [Kofman and Junco
2001]. Some theoretical topics like legitimacy and the
relationship between a (generic) DEVS-model and the
general dynamical system that it defines are also shown
at this stage.

In this way, two different connections between DEVS
and differential equations are seen. The first one
corresponds to the fact that both formalisms define
dynamical systems, as it can be seen at their most
abstract level of specification. The second one has to do
with the fact that DEVS models can represent
approximations of differential equation systems.

Coupled DEVS models are then introduced
simultaneously with the concept of hierarchical coupling.
Although we start introducing the coupling with
translation functions, we then emphasize the use of
input and output ports. The property of closure under
coupling and its proof are then treated. We deal with this
proof not only to show formally the hierarchical features
of DEVS but also to explain in deeper detail the way in
which coupled DEVS models work. Understanding this
proof considerably helps to the comprehension of
coupled DEVS dynamics.

These theoretical concepts are illustrated with examples
including the typical queue-processor systems and also
some approximations to continuous systems.

The last topic which is treated in the course is related to
DEVS simulation. Here, we introduce the basic
simulation scheme for coupled DEVS models as it is
developed in [Zeigler et al., 2000] and we introduce the
software environment PowerDEVS [Kofman et al.,
2003]. This software is first used in a lab work involving
all the topics related to the theory of DEVS developed
during the course.

The course concludes with a term project which
integrates the main concepts that were treated. This
project consists in the design, modeling, simulation and
analysis of an hybrid control system for an elevator. The
model includes the continuous dynamics of the elevator,
its electrical drive (a DC Motor), and an asynchronous
discrete control law, all of them interfaced by sensors
and actuators. Solving the project requires manipulating
the differential equations, obtaining numerical
approximations, modeling the discrete parts with DEVS,
implementing the DEVS models in PowerDEVS and
analyzing the simulation results.

A detailed description of the DEVS lab work and the
term project is given in the next section.

3. DEVS LAB WORK AND TERM PROJECT

As we mentioned before, the lab work and the project
are based on the use of PowerDEVS. This software
environment offers all the features which are needed to
perform the simulations with a direct translation from the
DEVS models.

The lab work consists in analyzing via modeling and
simulation a system consisting in several queue-
processor sub-systems which are fed by jobs coming
from a random generator and distributed by different
switches. The students should build the atomic models
of the generator, queue and processor and then
program them as blocks of PowerDEVS.

Figures 1 and 2 show the PowerDEVS model of the
system. There, the Queue-Processor sub-model makes
use of hierarchical coupling.

Figure 1. PowerDEVS model of a parallel processing
system.

The first goal of the simulations is to establish the
relationship between the mean time between
consecutive jobs and their mean processing time so that
all the jobs are processed (the queues are assumed to
have a finite capability so they can loss jobs if they
arrive faster than they can be processed).

Figure 2. Queue-Processor sub-system.

A legitimacy analysis of the atomic models is also
performed. Then the connections are modified so that
the output of the processors is fed back to the system
input showing that legitimacy is not closed under
coupling (the whole model becomes illegitimate despite
the fact that all its sub-models are legitimate).

After doing this lab work, the students have developed
skills related to DEVS modeling and analysis and they
have become familiar with the usage of PowerDEVS
and we consider that they are ready to get involved with
a more complex system.

The term project was conceived to integrate the main
concepts of the course. Using the DEVS formalism as a
tool of representation of the different subsystems, the
students must deal with differential equations and their
numerical approximations, they should design and
obtain the DEVS model of an asynchronous control
system, they have to model sensors and actuators, and
they must analyze simulation results which involve
stability and other continuous system dynamic features.

As already said, the system consists of an elevator
(driven by a DC motor), a control subsystem, sensors
and actuators. There is also a “generator” which
simulates the users that call the elevator from different
floors in a random way.

A first scenario implies a kind of open-loop control
system, as sensors are provided that can detect the
presence of the elevator only at discrete places: they are
placed within a distance of 1m to each other. The height
of the floors is 3mts. The control uses the information
given by the sensors (events provoked when the
elevator passes through them) and it can only take three
different actions: setting the armature voltage of the DC
motor to +V, to -V or applying a brake. The brake can be
only applied when null speed is detected by another
specific sensor.

A state equation-model of elevator and motor is given
and the first thing to be done by the students is to
approximate it with a numerical method (fourth order
Runge-Kutta is suggested) and to simulate it in order to
determine the delay necessary after passing a sensor to
invert the voltage so that the elevator stops in the
following floor.

Figure 3. PowerDEVS model of the elevator.

Using this idea the students must design the controller.
The system is completed with the model of the sensors
(which produce events when the elevator height reaches
integer numbers) and the random generator (Fig.3).

The model is validated with different simulations under
different conditions (weight and voltage variations). As
this is a sort of open loop control, its performance is
limited and variations of the input voltage produce
undesired behaviour.

In order to improve the performance of the control
system the hypothesis are changed: it is supposed that
the height can be continuously measured and that the
armature voltage can be continuously modified. In that
way, it is possible to implement a proportional control,
which is analyzed for different parameters and
situations. This new scenario allows to introduce (only
heuristically) some concepts of closed-loop control, and
to give a taste of its power.

Both, the lab work and the term project, are approved
with reports including the complete models, the
simulation results, the analysis and conclusions.

4. CONCLUSIONS AND FUTURE DIRECTIONS

We showed in this paper the way in which we included
the DEVS formalism in the syllabus of an undergraduate
course on system dynamics for computer science
students.

We evaluate it as a fruitful experience which allows to
integrate the main concepts of system dynamics using a
language which is familiar to the students.

Besides being a tool which connects theoretical topics,
DEVS gives the students the possibility of implementing
the practical issues related to the theory in applications
that they find interesting.

Up to this moment, we introduced only classic numerical
methods. Beggining from this year, we will also suggest
the students to simulate and compare the results with
quantization based methods which are best suited for
the simulation of hybrid systems [Kofman 2004] and are
already implemented in PowerDEVS.

It would be also desirable to include a short introduction
to discrete time systems showing also the way in which
they can be represented by DEVS. Although the
students do it in the term project (they represent by
DEVS a Runge-Kutta approximation) we are not
exploiting this from a theoretical point of view.

In spite of the integration role it plays, it is still quite hard
to exaplain the connection between DEVS and the other
topics. It usually happens that the students become
aware of the relationship after they finish the course.

A solution to this problem might consist in reordering the
topics. However, the lack of previous knowledge on
differential equations enforces to pay special attention to
the continuous systems leaving only a small fraction of
the course dedicated to general system theory.

5. REFERENCES

R. Kalman, P.L. Falb and M. A. Arbib. 1969. Topics in
Mathematical System Theory, McGraw-Hill.

Ernesto Kofman and Sergio Junco, 2001, “Quantized
State Systems. A DEVS Approach for Continuous
Systems Simulation". Transactions of SCS, 18, no.3,
123-132.

Ernesto Kofman, Marcelo Lapadula and Esteban
Pagliero, 2003, “PowerDEVS: A DEVS–Based
Environment for Hybrid System Modeling and
Simulation”, Technical Report LSD0306, LSD,
Universidad Nacional de Rosario. Submitted.

Ernesto Kofman, 2004, “Discrete Event Simulation of
Hybrid Systems”. SIAM Journal on Scientific Computing
25 no.5, 1771-1797.

Herbert Praehofer, 1991, “System Theoretic foundations
for combined Discrete-Continuous System simulation.”
PhD thesis, J.Kepler University of Linz.

Bernard Zeigler, 1976. Theory of Modeling and
Simulation. John Wiley & Sons, New York.

Bernard Zeigler and J.S.Lee, 1998, “Theory of quantized
systems: formal basis for DEVS/HLA distributed
simulation environment”. In SPIE Proceedings, 49 –58.

Bernard Zeigler, Tag Gon Kim and Herbert Praehofer,
2000. Theory of Modeling and Simulation. Second
edition. Academic Press, New York.

