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Abstract: This paper shows the use of new discrete event based numerical
integration methods applied to the simulation of sliding mode control systems.
These methods have many advantages in the simulation of general discontinuous
and hybrid systems. In this case, a comparative study is performed showing that
the simulation time can be significatively reduced with respect to any method
implemented in Simulink.
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1. INTRODUCTION

Sliding mode control systems (SMCS) yield mod-
els of discontinuous nature. In the normal opera-
tion regime the frequency of the commutations is
usually faster than the plant dynamics. Moreover,
these control systems are usually implemented in
digital devices and then, the sampling acts as an
extra source of commutations.

The presence of all those discontinuities intro-
duces a hard problem to the simulation. This is
not only a problem of SMCS but also a difficulty
by general hybrid and discontinuous systems.

The simulation of hybrid systems and disconti-
nuity handling have been always a problem for
discrete time methods. An integration step which
jumps along a discontinuity may produce unac-
ceptable errors. To avoid this, the methods should
perform steps in the instants of time in which the
discontinuities occur. Thus, the solvers should be
provided with tools for detecting discontinuities
(what include iterations and extra computational
costs), for adapting the step size to hit those in-
stants of time, and for simulating the discrete part
of the system (which can be quite complicated
itself) in interaction with the continuous part.

There are several methods and software tools
which simulate hybrid systems in a quite efficient
way, and different efforts to improve them can be
found in (Cellier, 1979; Otter and Cellier, 1996;
Park and Barton, 1996; Shampine and Reichelt,
1997; Shampine and Thompson, 2000; Esposito
et al., 2001). However, none of them can escape
from the mentioned problems. The asynchronous
nature of the discontinuity occurance enforces a
very important amount of extra calculations to
the integration routines, which were conceived to
show a synchronous behavior.

In the last years, a new approach for numerical
integration brought a solution to the problem.
Here, the classical time discretization was replaced
by the state variable quantization arriving to
asynchronous discrete event instead of discrete
time simulation models.

The idea was first introduced in (Zeigler and
Lee, 1998), where the Quantized Systems were
defined as approximations of continuous systems
which can be also expressed and simulated as
discrete event models within the DEVS formalism
framework (Zeigler et al., 2000).

This was then modified with the addition of hys-
teresis in the quantization (to avoid infinitelly fast



oscillations) arriving to the first discrete event nu-
merical method, called Quantized State Systems
(QSS method) (Kofman and Junco, 2001).

The method was then improved with the formula-
tion of a second order approximation called QSS2
(Kofman, 2002) and then both methods were ex-
tended to be used in differential algebraic equation
(DAE) systems (Kofman, 2003) and in hybrid and
discontinuous systems (Kofman, 2004).

In the last case, due to the asyncronous nature of
the approximation, the QSS and QSS2 methods
show the most important advantages compared
with the discrete time approaches.

The problems mentioned above related to dis-
continuity handling and detection dissapear when
using these discrete event algorithms. In conse-
quence, the computational costs associated to the
simulation of hybrid systems are significantly re-
duced. For instance, the use of QSS2 allows to
simulate some power electronic circuits more than
10 times faster than any algorithm implemented
in Matlab/Simulink (Felicioni and Kofman, 2003).

In this paper, we study the use of the mentioned
methods in the simulation of SMCS. We explore
the way of applying the methods in this particular
cases and we compare the results obtained in some
simulation examples with the classic solutions.

In the comparison we analyze the performance
given by the different methods implemented
in Simulink and the performance of the QSS2
method implemented in PowerDEVS (Pagliero
et al., 2003). The results will show a reduction of
up to 80 times in the total simulation time when
using the new discrete event approaches.

The paper is organized as follows. In section 2 we
introduce the QSS and QSS2 methods. Then, in
section 3 we recall the principles of Sliding Mode
Control and finally, in section 4 we perform the
mentioned comparative study over two illustrative
examples.

2. DISCRETE EVENT INTEGRATION

2.1 QSS–Method

Consider a time invariant ODE in its State Equa-
tion System (SES) representation:

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m

is an input vector, which is a known piecewise
constant function.

The QSS–method (Kofman and Junco, 2001) sim-
ulates an approximate system, which is called
Quantized State System:

ẋ(t) = f(q(t), u(t)) (2)

where q(t) is a vector of quantized variables which
are quantized versions of the state variables x(t).
Each component of q(t) is related to the corre-
sponding component of x(t) by a hysteretic quan-
tization function, which is defined as follows:

Definition 1. Let Q = {Q0, Q1, ..., Qr} be a set of
real numbers where Qk−1 < Qk with 1 ≤ k ≤ r.
Let Ω be the set of piecewise continuous real
valued trajectories and let xi ∈ Ω be a continuous
trajectory. Let b : Ω → Ω be a mapping and let
qi = b(xi) where the trajectory qi satisfies:

qi(t) =




Qm if t = t0
Qk+1 if xi(t) = Qk+1∧

∧qi(t−) = Qk ∧ k < r
Qk−1 if xi(t) = Qk − ε∧

∧qi(t−) = Qk ∧ k > 0
qi(t−) otherwise

(3)

and

m =



0 if xi(t0) < Q0

r if xi(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization func-
tion.

The discrete values Qk are called quantization
levels and the distance Qk+1−Qk is defined as the
quantum, which is usually constant. The width of
the hysteresis window is ε and, as it was shown in
(Kofman et al., 2001), the best choice is to take it
equal to the quantum.

The quantized variable trajectories qi(t) and the
state derivatives ẋi(t) are piecewise constant and
the state variables xi(t) are piecewise linear. As a
consequence, those trajectories can be represented
by sequences of events and then the QSS can be
simulated by a DEVS model.

The mapping of a QSS like (2) into a DEVS
model can be done in several ways and one of the
easiest is based on coupling principles. A generic
QSS can be represented by the block diagram of
Fig.1. That block diagram is composed by static
functions fi, integrators and quantizers.
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Fig. 1. Block Diagram Representation of a QSS

Each pair formed by an integrator and a quan-
tizer is called quantized integrator and it is equiv-



alent to a simple DEVS model. Similarly, the
static functions have DEVS equivalents and con-
sequently, the entire block diagram has an equiva-
lent coupled DEVS which represents it. The men-
tioned DEVS models can be found in (Kofman
and Junco, 2001).

The PowerDEVS simulation software (Pagliero
et al., 2003) has libraries with DEVS models rep-
resenting quantized integrators and static func-
tions. Thus, the implementation of the QSS–
method consists in building the block diagram in
the same way that it could be done in Simulink.

2.2 QSS2–Method

QSS only performs a first order approximation.
Due to accuracy reasons, a second order method
was proposed in (Kofman, 2002).

The basic idea of the new method, (called QSS2)
is the use of first–order quantization functions
instead of the quantization function given by (3).
Then, the simulation model can be still repre-
sented by (2) but now q(t) and x(t) have a differ-
ent relationship. This new system is called Second
Order Quantized State System or QSS2 for short.

A first–order quantization function can be seen as
a function which gives a piecewise linear output
trajectory, whose value and slope change when
the difference between this output and the input
becomes bigger than certain threshold (Fig. 2)

Input
Output

∆q

Fig. 2. I/O trajectories in a First Order quantizer

In that way, the quantized variable trajectories
are piecewise linear and the state trajectories are
piecewise parabolic 1 .

As before, the system can be divided into quan-
tized integrators and static functions like in Fig.1.
However, these models are more complex now.

Thus, the QSS2–method can be applied to ODE
systems in a similar way to QSS, i.e., building a
block diagram composed by the blocks represent-
ing integrators and static functions.

1 In nonlinear systems this is only approximated.

2.3 Main features of QSS and QSS2

The theoretical properties of QSS and QSS2
include convergence, stability and error bound.
While convergence is similar to classic algorithms
(i.e., the error goes to zero when quantum goes to
zero), stability and error bound are quite different.

These discrete event methods do not converge
to the equilibrium point but they guarantee ul-
timately bounded trajectories around that point.
They are stable only in the practical sense, but
the stability region includes the complete left half–
plane (like implicit discrete time methods).

Finally, the most distinctive property of the quan-
tization based methods is the existence of a cal-
culateable global error bound in linear systems.
Given a LTI system ẋ(t) = Ax(t)+Bu(t) where A
is a Hurwitz and diagonalizable matrix, the error
in the QSS or QSS2 simulation is always bounded
by

|e(t)| ≤ |V ||Re(Λ)−1Λ||V −1|∆q (4)

where Λ and V are the matrices of eigenvalues
and eigenvectors of A (Λ is diagonal), that is,
V −1AV = Λ and ∆q is the vector of quantum
adopted at each component 2 .

Besides these theoretical properties, QSS and
QSS2 also have some very particular features.
Each state variable in (2) changes at different
instants of time and then, each quatized integrator
has its own time base. In that way, the interaction
is done in an asynchronous way (each quantized
integrator can receive input changes at any instant
of time).

Thus, the events representing discontinuities do
not introduce any difficulty as they are treated
as changes in any state variable (i.e., as normal
steps).

We mentioned that the state trajectories are
piecewise linear or piecewise parabolic. Thus, the
discontinuity detection is straightforward since
finding the time in which those trajectories reach
a given value is equivalent to find the roots of a
first or second order polinomial. Moreover, this
problem can be solved in advance (before the
discontinuity occurrence), and then there is no
need of iterations.

In consequence, all the difficulties related to the
simulation of hybrid systems dissapear in the
context of the discrete event integration methods.

2 Symbol | · | denotes the componentwise module of a
complex matrix or vector and symbol “≤” in (4) also
denotes a componentwise inequality.



3. SLIDING MODE CONTROL

The main idea of SMC is to constrain the evolu-
tion of a system to a given manyfold or surface in
the state space by means of a control law that
switches between two possible feedback loops,
available for each control input (Sira-Ramirez,
1988).

The mentioned surface represents static relation-
ships among the state variables describing the be-
havior of the system. When the system is forced to
evolve on a given surface, the statics relationships
results in a dynamic behavior of the controlled
system.

The main drawback of this methodology is the
chattering phenomenon due to the finite frequency
of the control conmutation, (Hung et al., 1993).

Definition of a sliding motion: Consider the non
linear diynamical system:

ẋ = f(x) + g(x)u (5)

where x ∈ X ⊂ �n, is state vector, u : �n →
�, is the control input function, f and g are
smooth 3 local vector field defined on X, with
g(x) �= 0,∀x ∈ X.

Let s denote a smooth function

S : X → �, with non zero gradient

(∇S = ∂S
∂x �= 0 enX).

The set

MS = {x ∈ �n : s(x) = 0} (6)

defines a local regular (n − 1)-dimensional sub-
manifold in X called sliding manifold or switching
surface.

Let be the variable structure control law , depend-
ing on the sign of s(x)

u =

{
u+(x) if s(x) > 0
u−(x) if s(x) < 0

u(x)+ �= u−(x)

(7)
the extreme control values u(x),u−(x) are as-
sumed to be smooth functions of x and, without
lost of generality they satisfy u(x)+ > u−(x). If
as a result of the control policy (7) the system
trajectories (5) locally reach the sliding surface
ME and are confined to the vicinity of ME, we
say that a sliding mode regime exists on ME
whenever: 


lim

s→0+
Lf+gu+s < 0

lim
s→0−

Lf+gu−s > 0
(8)

where Lf+gus denote the directional derivative of
s in the direction of the vectorial field f + gu. We
can see from (8) that a crossing of the surface is
guaranted.

3 i.e. with continous derivatives of all order

4. EXAMPLES

In this section we show two examples in the power
electronic domain. In this cases the SMC take
advantege of the discontinous nature of the the
control magnitudes, PWM-signals, i.e., the chat-
tering phenomenon is inherent to the operational
mode of the system.

4.1 Current control of an RL circuit

The equation

di

dt
=
1
L
(u−R · i) (9)

gives a model of a simple RL circuit which is
a simplification of a current controller DC-DC
converter (if i(t) is constant) or DC-AC converter
(if i(t) is sinusoidal).

A typical way of feeding that circuit in power elec-
tronic applications is applying a switched control
strategy. One possibility is using a sliding modes
controller. If we need a sinusoidal reference, the
sliding surface is given by the equation:

s(i) = i− iref = i−A · sin(ω · t) = 0 (10)

and then, the control law is

u = −c · sign(s(i)) (11)

The implementation in real world of that kind of
control law requires the use of some hysteretic
characteristic. Otherwise, the frequency of com-
mutations goes to infinite.

In this case, we used a hysteresis window of width
equal to 0.4 in the value of s(i).

We simulated the system with PowerDEVS, using
parameters R = 10, L = 0.35, A = 12, ω = 25,
and c = 380. For the QSS2 method we choose
a quantum ∆q = 0.01 which in absense of state
events would ensure an absolute error less than
0.01A in the value of i(t).

The simulation of the first second was completed
after 2509 internal transitions at the integrator,
2508 commutations in the hysteretic comparer
and 398 steps at the sinusoidal generator. The
total number of steps was then 5415. The results
are shown in Figs.3–4.

We simulated the system again, but with a final
time of 100 seconds in order to measure the
execution time. In this case the simulation took
5 seconds (which permits concluding that the
execution time of the previous simulation was of
the order of 50msec).

Then we repeated the experiments using all the
variable step methods of Simulink (we discarded
fixed step because they would need a very small
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Fig. 3. Current in the RL circuit
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Fig. 4. Current in the RL circuit (startup)

step size in order to hit the events). We used
a relative tolerance of 0.1% so we get a similar
accuracy to QSS2 with a quantum of 0.01. In all
the cases, the number of steps was about 7430,
and the results are very similar to what is shown
in Figs.3–4.

Despite the number of steps was not much bigger
than in QSS2, the simulation of the first 100 sec-
onds took now 66 seconds on the same computer.
Thus, the use of the QSS2 method in PowerDEVS
reduced the execution time in more than 13 times
compared with Simulink.

The reason of this reduction is not only due to
the fact that QSS2 performs less steps, but also
due to the simplicity of the algorithm, which was
conceived to show an asynchronous behavior and
it does not need to iterate to hit the events.

4.2 Control of a DC Motor

The following SES describes the dynamics of a DC
motor with constant field excitation,

dia
dt
=
1
La
(ua − ia ·Ra − km · ω)

dω

dt
=
1
Jm
(km · ia − bm · ω)

We propose the control surface,

s = c · (ω − ω0) + ω̇ (12)

which results in the control law:

ua = −K · sign(s) (13)

In order to add more realistic features, we consid-
ered that the control is implemented on a digital
device.

We choose the motor parameters La = 3mHy,
Ra = 0.05Ω, km = 6.7851V ·s/rad, bm = 0.005N ·
m · s, and Jm = 15kg ·m2 (which correspond to a
real machine). The control parameters were c = 20
and k = 480, with a sampling period Ts = 0.0001.

We simulated the startup of the motor until
the first 5 seconds using the QSS2 method with
quanta 0.001 in the speed and 0.1 in the current.
The results are shown in Figs.5–6.
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Fig. 5. Speed in the DC motor
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Fig. 6. Speed in the DC motor (detail of the
permanent regime)

The simulation was completed after 11242 and
19578 internal transitions in the integrators which
calculate ω and ia respectively. Considering also
the 50000 transitions performed by the controller
(i.e. 5/0.0001) the total number of steps was
80280. The execution time was about 0.92sec.

The experiment was then improved taking into
account that the controller does not change its



output value at every sample. Thus, we modified
the DEVS model so that it only produces output
events after changes in its output value. Conse-
quently, the number of transitions at the con-
troller was reduced from 50000 to 16529 (which is
the real number of commutations in the controller
output). That makes a total of 47349 steps, which
are executed in about 0.7sec.

Variable step algorithms of Simulink need 50000
steps to complete the simulation, but the exe-
cution time is now about 56sec. Although the
number of steps is similar to QSS2, the complexity
of each step is much greater now. Moreover, each
discrete time step involves several full function
evaluations while each discrete event step involves
calculations in a part of the system.

5. CONCLUSIONS

We showed that quantization based methods can
provide an efficient solution to the problem of sim-
ulation of SCMS. Although it was already known
that QSS and QSS2 are well suited methods for
discontinuous systems, their use in these hybrid
control schemes exhibits very significant advan-
tages with respect to discrete time methods.

In spite of the performance observed, this work is
just a first attempt to apply discrete event meth-
ods in the simulation of hybrid control schemes.
Taking into account the way in which QSS and
QSS2 exploit sparsity and separate the problems,
we expect these methods to show even more ad-
vantages when dealing with larger and more com-
plex control systems.

Thus, the following steps are pointed to continue
this analysis over system of increasing complexity.
There, it is also interesting to study hybrid control
systems other than SMCS.

Long term future work should deal with the theo-
retical properties in order to give some extension
of them to be applied to these hybrid cases.
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