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Abstract— This paper studies the use of
Quantized State Control (QSC) in Time–
Varying (TV) plants. Making use of a Lya-
punov analysis, the stability properties of
Time Invariant QSC are extended to the non–
stationary case. Then, based on the resulting
stability theorem, a design algorithm is devel-
oped. Finally, the use of this algorithm –which
allows the design of QSC controllers according
to stability and convergence speed features– is
shown with the design and the simulation of an
illustrative example.
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I. INTRODUCTION

Quantized State Control (Kofman, 2003) is a method-
ology which allows the digital implementation of pre-
viously designed continuous controllers based on the
quantization of their state variables. The resulting
digital controller –which can be described by a dis-
crete event system– is completed with an asynchronous
sampling scheme (Sayiner et al., 1993) so that, ignor-
ing the temporal errors introduced by the clock of the
digital device, no time discretization is performed.
The use of QSC instead of classic discrete time dig-

ital controllers permits to conserve the region of at-
traction in nonlinear systems improving also the dy-
namic response and reducing the computational costs
as well as the information transmitted between con-
trollers and plants. In the LTI case, digital QSC con-
trollers also ensure that the resulting trayectories do
not differ from the ones obtained with the ideal con-
tinuous controllers in more than a bound which can be
calculated with a closed formula (Kofman, 2002).
Since QSC takes into account the presence of quan-

tization, it does not guarantee asymptotic stability
but ultimately boundedness of the solutions (Khalil,
1996). This fact, which seems to be a disadvantage,
is common to all the quantization based approaches
(Delchamps, 1990; Brockett and Liberzon, 2000; Elias
and Mitter, 2001). Moreover, in any sampled data
control system where the effects of A/D and D/A con-
verters are taken into account the theory can only talk
about ultimate bounds (Miller et al., 1989; Hou et al.,

1997).
The original definitions of QSC and the mentioned

properties were established under the assumption of a
Time–Invariant (TI) plant with a TI controller. Al-
though the restriction on the controller cannot be
avoided1, there is no reason to consider only TI plants.
Taking into account the last remark, this work at-

tempts to extend the properties and design algorithms
of TI QSC to the Time Varying case.
The paper is organized as follows:
After recalling the principles and properties of QSC

(Section II), the main results of QSC with TV–plants
–a stability Theorem and a design algorithm– are pre-
sented in Section III. Finally, these results are illus-
trated with the design and simulation of a simple ex-
ample.

II. QUANTIZED STATE CONTROL

QSC is a digital control scheme in which a continuous
plant is controlled by a discrete event system obtained
with the quantization of a continuous controller.

A. Quantized State Systems

Consider the State Equation System (SES) given by:
{

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t)) (1)

Related to this system, an associated Quantized State
System (QSS) (Kofman and Junco, 2001) is given by:

{
ẋ(t) = f(q(t), u(t))
y(t) = g(q(t), u(t)) (2)

In this system, q(t) (quantized variables) and x(t)
(state variables) are related (componentwise) by hys-
teretic quantization functions, which are defined as fol-
lows:

Definition 1. Hysteretic Quantization Function.
Let Q = {Q0, Q1, ..., Qr} be a set of real numbers

where Qk−1 < Qk with 1 ≤ k ≤ r. Let Ω be the set
of piecewise continuous real valued trajectories and let
xi ∈ Ω be a continuous trajectory. Let b : Ω → Ω be

1In the general case it is not possible to obtain a discrete
event description of a quantized time–varying system.



a mapping and let qi = b(xi) where the trajectory qi

satisfies:

qi(t) =




Qm if t = t0
Qk+1 if xi(t) = Qk+1∧

∧qi(t−) = Qk ∧ k < r
Qk−1 if xi(t) = Qk − ε∧

∧qi(t−) = Qk ∧ k > 0
qi(t−) otherwise

(3)

and

m =




0 if xi(t0) < Q0

r if xi(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization function.

The discrete values Qk are called quantization levels
and the distance Qk+1−Qk is defined as the quantum,
which is usually constant. The width of the hysteresis
window is ε and, as it was shown in (Kofman et al.,
2001), it should be taken equal to the quantum to
improve the accuracy. The values Q0 and Qr are the
lower and upper saturation bounds.
A fundamental property of a Quantization Function

with hysteresis when t ≥ t0 and Q0 ≤ xi(t) ≤ Qr is
given by the following inequality

|qi(t)− xi(t)| ≤ max
1≤i≤r

(Qi − Qi−1, ε) (4)

The role of the quantization functions in (2) is to
convert the state trajectories (x(t)) into piecewise con-
stant ones (q(t)). In that way, provided that u(t) is
piecewise constant, it results that the derivatives ẋ(t)
are also piecewise constant and then the state trajec-
tories are piecewise linear.
As a consequence of these properties of the trajec-

tory forms, QSS can be exactly represented by discrete
event models within the DEVS formalism framework
(Zeigler et al., 2000). The DEVS model related to a
generic QSS and the proof of the mentioned properties
can be found in (Kofman and Junco, 2001).
The possibility of representing QSS by DEVS mod-

els and the fact that DEVS models can be simulated in
real time by digital devices2 (Zeigler and Kim, 1993)
suggested the use of QSS as digital controllers and the
definition of QSC.

B. QSC Definition

Consider the Continuous Control System (CCS) con-
sisting of plant and controller, Eqs.(5) and (6) respec-
tively, and their (ideal) interconnection, Eq. (7).

{
ẋp(t) = fp(xp(t), up(t), t)
yp(t) = gp(xp(t), t)

(5)

{
ẋc(t) = fc(xc(t), uc(t), ur(t))
yc(t) = gc(xc(t), uc(t), ur(t))

(6)

2DEVS representation of QSS is exact. However, real time
simulation of DEVS has errors related to temporal resolution
and round-off in digital devices

up(t) = yc(t), uc(t) = yp(t) (7)

It is being considered here that the plant could be time
varying. When it comes to the controller, it is assumed
that it is stationary and it has an input reference ur(t).

Definition 2. Quantized State Controller.
A QSS associated to a continuous controller (6) is

called Quantized State Controller (QSC controller).

Definition 3. QSC System.
A QSC system is a control scheme composed by

a continuous plant and a QSC controller connected
through asynchronous A/D and D/A converters.
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Figure 1: Block Diagram of the QSC system

Figure 1 shows a block diagram representation of a
QSC system. Despite its state–equation–like represen-
tation, the controller is in fact a DEVS model.
The QSC implementation of the controller trans-

forms (6) into the new set of equations:
{

ẋc(t) = fc(qc(t), uc(t), ur(t))
yc(t) = gc(qc(t), uc(t), ur(t))

(8)

The asynchronous sampling scheme (Sayiner et al.,
1993) implies that the A/D conversions are performed
only when the analog input and the digital output of
the converters differ in a quantity corresponding to
one quantization interval. Then, they can be seen as
quantization functions with hysteresis where the quan-
tization intervals and the hysteresis windows have the
same size. Similarly, D/A converters can be repre-
sented by quantization functions (but without hystere-
sis). Thus, the presence of the asynchronous convert-
ers transforms (7) into:

up(t) = ycq
(t), uc(t) = ypq

(t) (9)

where variables ycq
(t) and ypq

(t) are quantized ver-
sions of the plant and the controller output variables



C. QSC Properties

The CCS closed loop equations can be derived from
Eqs.(5)–(7) arriving to{

ẋp = fp(xp, gc(xc, gp(xp, t), ur), t)
ẋc = fc(xc, gp(xp, t), ur)

(10)

Let us define

∆xc(t) = qc(t)− xc(t) (11a)
∆yp(t) = ypq

(t)− yp(t) (11b)
∆yc(t) = ycq

(t)− yc(t) (11c)

Thus, from these definitions and Eqs.(5), (8) and (9),
the QSC closed loop equations can be written as:


ẋp = fp(xp, gc(xc +∆xc, gp(xp, t)+

+∆yp, ur) + ∆yc, t)
ẋc = fc(xc +∆xc, gp(xp, t) + ∆yp, ur)

(12)

Then, the QSC system (12) can be seen as a perturbed
version of the original CCS (10).
From the property of the quantization functions –

provided that the variables xc, yp and yc do not reach
the corresponding saturation bounds3– it also results
that the perturbation terms are bounded by (4). Thus,
the properties of the QSC implementation of a CCS
can be studied by looking at the effects of bounded
perturbations in the original closed loop system.
Based on this remark, the stability theorem of TI

QSC (Kofman, 2003) and the stability and error bound
estimation of LTI QSC (Kofman, 2002) were proven.
The stability theorem of TI QSC tells that, given

a CCS in which the origin is an asymptotically stable
equilibrium point, an appropriate quantization can be
found so that the resulting QSC controller ensures ul-
timately boundedness of the solutions (for any given
ultimate bound) conserving also the estimate region of
attraction.
That appropriate quantization can be found accord-

ing to desired ultimate bound following an algorithm
which makes use of a Lyapunov function of the original
CCS.
On the other hand, the theorem for LTI QSC tells

that the QSC implementation of an asymptotically
stable LTI CCS is always globally and ultimately
bounded. The ultimate bound can be estimated with a
closed formula. Moreover, the trajectories of the CCS
and the resulting QSC never differ from each other in
more than the mentioned bound.
Thus, the quantization choice which completes the

QSC design can be made based on these properties,
according to the desired ultimate bounds.

III. TIME VARYING QSC

The stability theorem and the corresponding design
algorithm were based on a stationary Lyapunov anal-
ysis. This section introduces the main contributions

3It will be considered that the non–saturation region is
enough large so that the trajectories do not leave it.

of this work by extending those results to the time
varying case.

A. Stability of TV QSC

When the reference trajectory ur(t) is zero (or con-
stant), the QSC system (12) can be rewritten as

ẋ = f(x +∆x,∆y, t) (13)

where x , [xp, xc]T , ∆x , [0,∆xc]T , ∆y ,

[∆yp,∆yc]T , and f , [fp, fc]T .
With these definitions, the CCS (10) becomes

ẋ = f(x, 0, t) , f̃(x, t) (14)

Then, the following theorem which relates the stability
properties of (14) and (13) can be stated:

Theorem 1. Let the origin be an asymptotically stable
equilibrium point of the closed loop CCS (14). Assume
that function f is continuous and a continuously dif-
ferentiable Lyapunov function V (x, t) is known with

W1(x) ≤ V (x, t) ≤ W2(x) (15)

∂V

∂x
· f̃(x, t) +

∂V

∂t
≤ −W3(x) (16)

∀t ≥ 0, ∀x ∈ D being D a compact set which contains
the origin and Wi are continuous positive definite func-
tions in D.
Let Ω2a

= {x|W2(x) ≤ a} with a being an arbi-
trary positive constant which is enough small so that
{x|W1(x) ≤ a} is a closed region inside D.
Let Ω1b

= {x|W1(x) ≤ b} being b an arbitrary posi-
tive constant (b < a) enough small so that Ω1b

⊂ Ω2a
.

Then, a quantization can be found so that the QSC
system trajectories starting in Ω2a

finish inside Ω1b
,

reaching this region in finite time.

Proof. The derivative of V (x, t) along the solutions of
the QSC system (13) is

V̇ (x, t) =
∂V

∂x
· f(x +∆x,∆y, t) +

∂V

∂t

=
∂V

∂x
· f(x, 0, t) +

∂V

∂t
+

+
∂V

∂x
· (f(x +∆x,∆y, t)− f(x, 0, t))

Then, using (16) it results that

V̇ (x, t) ≤ −W3(x)+
∂V

∂x
· (f(x+∆x,∆y, t)−f(x, 0, t))

Consider the sets Ω2b
= {x|W2(x) ≤ b} and Ω1a

=
{x|W1(x) ≤ a}. From the hypotesis made about a
and b, it results that

Ω2b
⊂ Ω1b

⊂ Ω2a
⊂ Ω1a

⊂ D (17)

Since W3(x) is positive definite in D, it is positive
in Ω1,2 , Ω1a

− Ω2b
. Moreover, it exists a positive

constant s where

s , min
x∈Ω1,2

W3(x) (18)



Let us define the following function

α(x,∆x,∆y, t) , −W3(x) +
∂V

∂x
· (19)

·(f(x +∆x,∆y, t)− f(x, 0, t))

The continuity in functions W3 and f and the fact
that V is continuously differentiable implies that α is
continuous. From the definition of α and Eq.(18) it
results that

α(x, 0, 0, t) ≤ −s ∀x ∈ Ω1,2,∀t ≥ 0 (20)

Let αM be the function defined by

αM (∆x,∆y) , sup
x∈Ω1,2,t≥0

(α(x,∆x,∆y, t)) (21)

It can be easily seen that αM is continuous and
αM (0, 0) ≤ −s. Then, for any positive number s1 < s
a positive constant r can be found so that the condi-
tion

‖(∆x,∆y)‖ ≤ r (22a)

implies that
αM (∆x,∆y) ≤ −s1 (22b)

and then it results that

V̇ (x, t) ≤ α(x,∆x,∆y, t) ≤ αM (∆x,∆y) ≤ −s1 (23)

in Ω1,2.
From here to the end, the proof follows Theorem 5.3

of (Khalil, 1996).
Let Ωa,t = {x|V (x, t) ≤ a} and Ωb,t = {x|V (x, t) ≤

b} be time variable sets. From (15) it results that

Ω2b
⊂ Ωb,t ⊂ Ω1b

⊂ Ω2a
⊂ Ωa,t ⊂ Ω1a

⊂ D (24)

The border of Ωa,t is inside Ω1,2, where V̇ (x, t) is nega-
tive. It means that the trajectories of the QSC system
(13) cannot abandon Ωa,t.
Then, any trajectory starting in Ω2a

cannot aban-
don Ω1a

.
The border of Ωb,t is also inside Ω1,2. Then the

trajectories cannot abandon this time variable set.
To complete the proof, we need to ensure that the

trajectories initiated in Ω2a
⊂ Ωa,t reach Ωb,t in a finite

time.
Let φ(t) be a solution of (13) starting in Ωa,t (i.e.

V (φ(0), 0) ≤ a) and let us suppose that

V (φ(t), t) > b ∀t (25)

then we have V̇ (φ(t), t) ≤ −s1 and after

t1 ,
a − b

s1
(26)

it results that V (φ(t1), t1) ≤ b which yields a contra-
diction. Then, the region Ωb,t must be reached before
the finite time t1.
Since Ωb,t ⊂ Ω1b

the trajectory also reaches the set
Ω1b

before that time.

Equation (22a) gives the maximum perturbation al-
lowed to ensure the achievement of the proposed goal
(i.e. region of attraction Ω2a

and ultimate bound in
Ω1b

). Since the maximum perturbation in each vari-
able is given by the corresponding quantum, this equa-
tion should be used to choose the quantum at the dif-
ferent controller state variables and converters com-
pleting in that way the QSC design.
Observe that Ω2a

is also the estimation of the region
of attraction of the CCS using the Lyapunov function
V . Then, a QSC implementation can be found so that
it conserves the estimated region of attraction.

B. Design Algorithm for TV QSC

The design of a QSC contoller can be divided in two
steps. The first one is the design of the continuous
controller, which can be done following any technique.
The second step is the choice of the quantization at

each variable. The use of a very small quantum yields
solutions which are very closed to the trajectories of
the CCS. This is due to the property of convergence
which tells that –under locally Lipchitz conditions on
the functions– the solutions of the QSC system go to
the solutions of the CCS when the quantization go to
zero (Kofman, 2003). In that way, and also according
to Theorem 1, the ultimate bound can be reduced to
arbitrary small values.
However, the use of a small quantum increases the

number of events at the controller and the digital de-
vice can fail in its attempt to give the correct output
values at the required time.
Therefore, there is always a trade–off between accu-

racy and practical considerations related to the com-
putational costs. Then the idea is to exploit Theo-
rem 1 in order to choose the quantization according to
some essential features (region of attraction and ulti-
mate bound). In that way, the quantization adopted
will be just as small as necessary to ensure those prop-
erties and –provided that the CCS is not too fast– the
digital device will be able to correctly implement the
resulting QSC controller.
The translation of these ideas into a design algo-

rithm for QSC can be written as follows:

1. Design a continuous controller and calculate the
Lyapunov function V (x, t) and the functions
Wi(x) according to (15)–(16) for the closed loop
CCS.

2. Choose the QSC region of attraction Ω2a
and the

ultimate region Ω1b
together with the constants

a and b.

3. Obtain the perturbed closed loop function f ac-
cording to (13).

4. Obtain function α according to (19) and αM ac-
cording to (21).



5. Calculate constant s according to (18) and
choose the positive constant s1 < s. If the goal is
just to ensure ultimately boundedness s1 should
be very small. Otherwise, if the speed of conver-
gence is also important, it can be chosen taking
into account (26).

6. Compute the value of r according to (22).

7. Choose the quantization at the controller state
variables and converters so that (22a) is satisfied.

It can be easily seen that this procedure leads to a
QSC controller which ensures region of attraction Ω2a

and ultimate region Ω1b
.

IV. EXAMPLES AND RESULTS

The unstable time varying plant
{

ẋp = xp · (1 + sin t + cos t) + up

yp = (2 + cos t) · xp

can be stabilized by the controller
{

ẋc = −xc + uc

yc = −xc − uc
(27)

The resulting closed loop system can be written as
{

ẋp = −(1− sin t) · xp − xc

ẋc = (2 + cos t) · xp − xc

Here, the Lyapunov candidate

V (xp, xc, t) = x2
p +

1
2
x2

c +
1
2
x2

p cos t

verifies (15) with

W1(xp, xc) =
1
2
x2

p +
1
2
x2

c (28)

W2(xp, xc) =
3
2
x2

p +
1
2
x2

c

The orbital derivative is

V̇ = (2 + cos t) · (sin t − 1) · x2
p − x2

c −
1
2
x2

p sin t

which satisfies (16) with

W3 = −1
2
x2

p − x2
c

Then, the closed loop CCS is asymptotically stable
and the algorithm resulting from Theorem 1 can be
used to design the QSC controller.
The first step for the QSC design consists in choos-

ing the region of attraction and the ultimate bound.
Since inequalities (15)–(16) stand in �2 (i.e. the CCS
stability is global) it is not necessary to restrict the
region of attraction except for chosing the saturation
values. In this case, the choice of Ω2a

does not affect
the calculations.

The ultimate bound Ω1b
will be chosen with b = 0.5.

Then, taking into account (28) it results that Ω1b
=

{x ∈ �2|‖x‖ ≤ 1}.
The perturbed equations (13) can be written as

{
ẋp = −(1− sin t) · xp − xc −∆xc +∆yc −∆yp

ẋc = (2 + cos t) · xp − xc −∆xc +∆yp

and then, from (19) function α(x,∆x,∆y, t) results

α = −x2
c −

1
2
x2

p + xp · (2 + cos t) ·
·(−∆xc +∆yc −∆yp) + xc · (−∆xc +∆yp)

Although the maximum αM in (21) cannot be easily
obtained, it can be bounded using the fact that ‖x‖ >
1/3 in Ω1,2. Then, after some calculations it results
that

αM ≤ − 1
18

+
(
(|∆xc|+ |∆yc|+ |∆yp|)2 +

+
1
9
(|∆xc|+ |∆yp|)2

)1/2

Thus, taking the quantum equal to 0.018 in the con-
troller and converters we can ensure that αM ≤
−0.0093 in Ω1,2, which implies that the trajectories
finish inside Ω1b

in finite time, with a minimum speed
s1 = 0.0093.
Figs.2–5 show the simulation results for an initial

condition xp = 5, xc = 0.
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Figure 2: xp vs. t
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Figure 3: Final oscillations in xp vs. t
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Figure 4: xp vs. xc

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 5: Final oscillations in xp vs. xc

Fig.5 also shows that the design was very conserva-
tive. The ultimate bound observed in the simulation
is less than 0.03 (in norm 2) which is more than 30
times smaller than the estimated.
There are two reasons which can explain this. The

first one is that Lyapunov analysis often leads to con-
servative estimations of the ultimate bounds. The
second reason is that in this case the D/A converter
does not introduce any perturbation since it is exactly
matched with the quantizer of xc and the A/D con-
verter.

V. CONCLUSIONS

This work studied the properties of QSC in time vary-
ing systems showing that the main features and ad-
vantages of the methodology are also satisfied in these
cases.
Theorem 1 proved that the QSC control of time

varying plants allows to ensure ultimately bounded-
ness conserving the region of attraction.
A design algorithm derived from this theorem was

also introduced and its use was illustrated with an ex-
ample.
When it comes to future work, it should be con-

sidered that the main theoretical properties were al-
ready proven for general nonlinear time varying sys-
tems and for LTI systems. There is an intermediate
case which should be taken into account which cor-
responds to Linear Parameter–Varying (LPV) plants.
The example given in fact corresponds to that category
and although a Lyapunov analysis could be done for

that case, the result was very conservative. If the ge-
ometrical analysis for LTI systems of (Kofman, 2002)
were extended for LPV plants, less conservative results
might be obtained.
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