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Abstract— This paper extends the use of
quantization–based integration methods to the
simulation of hybrid systems. Using the fact
that these methods approximate ordinary dif-
ferential equations (ODEs) and differential al-
gebraic equations (DAEs) by discrete event sys-
tems, it is shown how hybrid systems can be ap-
proximated by pure discrete event simulation
models. In this way, the treatment and de-
tection of events representing discontinuities –
which constitute an important problem for clas-
sic ODE solvers– is efficiently solved. The re-
sulting advantages are illustrated and discussed
through the simulation of two examples.

Keywords— Hybrid systems, ODE integra-
tion, Discrete Event Systems.

I. INTRODUCTION

Continuous system simulation is a topic which has ad-
vanced significantly with the appearance of modern
computers. Based on classic methods for numerical
resolution of ODE’s like Euler, Runge–Kutta, Adams,
etc., several variable–step and implicit ODE solver
methods were developed.
Although there are several differences between the

mentioned ODE solver algorithms, all of them share a
property: they are based on time discretization. That
is, they give a solution obtained from a difference equa-
tion system (i.e. a discrete–time model) which is only
defined in some discrete instants.
The complexity of most technical systems yields

models which often combine a continuous part (de-
scribed by ODEs or DAEs) and discrete components.
The interaction between these subsystems can pro-
duce sudden changes (discontinuities) in the contin-
uous part which must be handled by the integration
algorithms.
The mentioned sudden changes are called events and

two different cases can be distinguished according to
the nature of their occurrence. The events which occur
at a given time, independently of what happens in the
continuous part are called Time Events. On the other
hand, events which are produced when the continu-

ous subsystem state reaches some condition are called
State Events.
The integration along discontinuities can cause se-

vere inefficiency because the non–smoothness vio-
lates the theoretical assumptions on which solvers are
founded (Barton, 2000). Thus, time and state events
must be detected in order to perform steps at their
occurrence.
The event detection techniques have been being

studied since Cellier’s Thesis (Cellier, 1979) and many
works can be found in the recent literature (Park and
Barton, 1996; Taylor and Kebede, 1996; Schlegl et al.,
1997; Esposito et al., 2001).
Although these ideas work quite efficiently, the tech-

niques do not say how to represent discrete parts
and how to schedule the time events in general cases.
Moreover, the state event detection requires perform-
ing some iterations to find the time of the event oc-
currence. Due to these facts , the simulation of hybrid
systems constitutes one of the most difficult topics in
the numerical integration area.
A completely different approach for ODE numeri-

cal simulation has been being developed since the end
of the 90’s where time discretization is replaced by
state variables quantization. As a result, the simula-
tion models are not discrete time but DEVS (Zeigler
et al., 2000).
The origin of this idea can be found in the defini-

tion of Quantized Systems and their representation in
terms of DEVS models (Zeigler and Lee, 1998). Quan-
tized Systems weres reformulated with the addition of
hysteresis and formalized as a simulation method for
ODE’s in (Kofman and Junco, 2001) where the Quan-
tized State Systems (QSS) were defined.
This new method was improved with the definition

of the Second Order Quantized State Systems (QSS2)
(Kofman, 2002a) and then extended to the simulation
of DAEs (Kofman, 2002b).
Despite their simplicity, the QSS and QSS2 meth-

ods satisfy some strong stability, convergence and error
bound properties. They can also reduce the number of
calculations, their parallel implementation is straight-
forward and they can exploit sparsity in a very efficient
fashion.



This work attempts to show that, due to the discrete
event nature of QSS and QSS2, the main difficulties
related to discontinuity handling in hybrid systems are
solved with these methods.

II. QUANTIZATION–BASED
INTEGRATION

A. QSS–Method

Consider a time invariant ODE in its State Equation
System (SES) representation:

ẋ(t) = f(x(t), u(t)) (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is
an input vector, which is a known piecewise constant
function.
The QSS–method (Kofman and Junco, 2001) sim-

ulates an approximate system, which is called Quan-
tized State System:

ẋ(t) = f(q(t), u(t)) (2)

where q(t) is a vector of quantized variables which are
quantized versions of the state variables x(t). Each
component of q(t) is related with the corresponding
component of x(t) by a hysteretic quantization func-
tion, which is defined as follows:

Definition 1. Let Q = {Q0, Q1, ..., Qr} be a set of real
numbers where Qk−1 < Qk with 1 ≤ k ≤ r. Let Ω be
the set of piecewise continuous real valued trajectories
and let xi ∈ Ω be a continuous trajectory. Let b : Ω→
Ω be a mapping and let qi = b(xi) where the trajectory
qi satisfies:

qi(t) =




Qm if t = t0
Qk+1 if xi(t) = Qk+1∧

∧qi(t−) = Qk ∧ k < r
Qk−1 if xi(t) = Qk − ε∧

∧qi(t−) = Qk ∧ k > 0
qi(t−) otherwise

(3)

and

m =



0 if xi(t0) < Q0

r if xi(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization function.

The discrete values Qk are called quantization levels
and the distance Qk+1−Qk is defined as the quantum,
which is usually constant. The width of the hysteresis
window is ε and, as it was shown in (Kofman et al.,
2001), it is better to take it equal to the quantum.
In (Kofman and Junco, 2001) it was proven that

the quantized variable trajectories qi(t) and the state
derivatives ẋi(t) are piecewise constant and the state
variables xi(t) are piecewise linear. As a consequence,
those trajectories can be represented by sequences of
events and then the QSS can be simulated by a DEVS

model. There, it is also shown that the use of hystere-
sis in QSS is necessary to ensure those properties.
The mapping of a QSS like (2) into a DEVS model

can be done in several ways and one of the easiest is
based on coupling principles. A generic QSS can be
represented by the block diagram of Fig.1. That block
diagram is composed by static functions fi, integrators
and quantizers.
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Figure 1: Block Diagram Representation of a QSS

Each pair formed by an integrator and a quantizer
is called quantized integrator and it is equivalent to
a simple DEVS model. Similarly, the static functions
have DEVS equivalents and consequently, the entire
block diagram has an equivalent coupled DEVS which
represents it. The mentioned DEVS models can be
found in (Kofman and Junco, 2001).
Some simulation programs –PowerDEVS (Pagliero

and Lapadula, 2002) for instance– have libraries with
DEVS models representing quantized integrators and
static functions. Thus, the implementation of the
QSS–method consists in building the block diagram
in the same way that it could be done in Simulink.

B. QSS2–Method

QSS only performs a first order approximation. Due
to accuracy reasons, a second order method was pro-
posed in (Kofman, 2002a) which also shares the main
properties and advantages of QSS.
The basic idea of the new method, (called QSS2)

is the use of first–order quantization functions instead
of the quantization function given by (3). Then, the
simulation model can be still represented by (2) but
now q(t) and x(t) have a different relationship. This
new system is called Second Order Quantized State
System or QSS2 for short.
A first–order quantization function can be seen as

a function which gives a piecewise linear output tra-
jectory, whose value and slope change when the dif-
ference between this output and the input becomes
bigger than certain threshold (Fig. 2)
In that way, the quantized variable trajectories are

piecewise linear and the state trajectories are piecewise
parabolic1.
As before, the system can be divided into quantized

integrators and static functions like in Fig.1. However,
1In nonlinear systems this is only approximated.
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Figure 2: I/O trajectories in a First Order quantizer

the DEVS models of the QSS2 quantized integrators
are different due to the new behavior of the quantiz-
ers. Similarly, the DEVS models of the QSS2 static
functions are also different since they should take into
account the slopes of the piecewise linear trajectories.
The formal definition of first order quantization

functions and the DEVS models associated to the
QSS2 integrators and static functions can be found
in (Kofman, 2002a).
Thus, the QSS2–method can be applied to ODE sys-

tems in a similar way to QSS, i.e., building a block
diagram composed with the blocks representing inte-
grators and static functions.

C. Properties of QSS and QSS2

There are properties –which were proven in (Kofman
and Junco, 2001) and (Kofman, 2002a)– that relates
the solutions of Systems (1) and (2). These properties
not only show theoretical features but also allow deriv-
ing rules for the choice of the quantization according
to the desired accuracy.
The mentioned properties are stability, convergence

and error bound and the corresponding proofs were
built based on perturbation studies. In fact, defining
∆x(t) = q(t)− x(t), System (2) can be rewritten as

ẋ(t) = f(x(t) + ∆x(t), u(t)) (4)

From the definition of the hysteretic and the first or-
der quantization functions, it can be ensured that each
component of ∆x is bounded by the corresponding
quantum adopted. Thus, the QSS and QSS2 meth-
ods simulate an approximate system which only differs
from the original SES (1) due to the presence of the
bounded state perturbation ∆x(t).
The Convergence Property ensures that an arbitrar-

ily small error can be achieved by using a sufficiently
small quantization. A sufficient condition which guar-
anties this property is that the function f is locally
Lipschitz.
The Stability Property relates the quantum adopted

with the final error. An algorithm can be derived from
the proof of this property which allows the choice of
the quantum to be used in the different state variables.
Finally, the Error Bound is probably the most

important property of quantization based methods.

Given a LTI system ẋ(t) = Ax(t) + Bu(t) where A
is a Hurwitz and diagonalizable matrix, the error in
the QSS or QSS2 simulation is always bounded by

|φ̃(t)− φ(t)| ≤ |V ||Re(Λ)−1Λ||V −1|∆q (5)

where Λ and V are the matrices of eigenvalues and
eigenvectors of A (Λ is diagonal), that is, V −1AV =
Λ and ∆q is the vector of quantum adopted at each
component2.
Inequality (5) holds for all t, for any input trajectory

and for any initial condition.

III. HYBRID SYSTEM SIMULATION

A. Continuous Part Approximation

There is not a unified representation of hybrid systems
in the literature. Anyway, the different approaches
coincide in describing them as sets of ODEs or DAEs
which are selected according to some variable which
evolves in a discrete way (Taylor, 1993; Branicky, 1994;
Broenink and Weustink, 1996; Barton, 2000).
Here, it will be assumed that the continuous subsys-

tem can be represented by

ẋ(t) = f(x(t), u(t), z(t),m(t)) (6a)
0 = g(xr(t), ur(t), z(t),m(t)) (6b)

being m(t) a piecewise constant trajectory coming
from the discrete part, which defines the different
modes of the system. Thus, for each value of m(t)
there is a different DAE representing the system dy-
namics.
It will be considered that the implicit equation (6b)

has a solution for each value of m(t) (which implies
that the system (6) has always index 1). Variables xr

and ur are reduced versions of x and u.
Independently of the way in which m(t) is calcu-

lated, the simulation sub-model corresponding to the
continuous part can be built considering thatm(t) acts
as an input.
Then, the QSS and QSS2 methods applied to this

part will transform (6) into:

ẋ(t) = f(q(t), u(t), z(t),m(t)) (7a)
0 = g(qr(t), ur(t), z(t),m(t)) (7b)

This model corresponds to the QSS or QSS2 associated
to a generic DAE (Kofman, 2002b) which only differs
from the scheme shown in Fig.1 in the presence of a
new block which solves the implicit equation.

B. Discrete Part Representation

One of the most important features of DEVS is its ca-
pability to represent all kind of discrete systems. Tak-
ing into account that the continuous part is being ap-
proximated by a DEVS model, it is natural represent-
ing also the discrete behavior by another DEVS model.

2Symbol | · | denotes the componentwise module of a complex
matrix or vector and symbol “≤” in (5) also denotes a compo-
nentwise inequality.



Then, both DEVS models can be directly coupled to
build a unique DEVS model which approximates the
whole system.
In presence of only Time Events, the DEVS model

representing the discrete part will be just an event gen-
erator, i.e. a DEVS model which does not receive any
input and produces different output events at different
times carrying the successive values of m(t)
Taking into account the asynchronous way in which

the static functions and quantized integrators work,
the events will be processed by the continuous part
as soon as they come out from the generator without
the need of modifying anything in the QSS or QSS2
methods.
When it comes to state events, the discrete part is

ruled not only by the time advance but also by some
events which are produced when the input and state
variables reach some condition.
Here, the QSS and QSS2 methods have a bigger ad-

vantage: The state trajectories are perfectly known
for all time. Moreover, they are piecewise linear or
piecewise parabolic functions which implies that de-
tecting the event occurrence is straightforward. The
only thing which has to be done is to provide those
trajectories to the discrete part so it can detect the
event occurrence and it can calculate the trajectory
m(t).
Taking into account the trivial form of the trajecto-

ries, the discrete part can receive the state derivatives
and then integrate them. It is simple and does not
require computational effort since the derivative tra-
jectories are piecewise constant or piecewise linear (in
QSS2) and their integration only involves the manip-
ulation of the polynomial coefficients.
Using these ideas, the simulation model of a hybrid

system like (6) using the QSS or QSS2 method can be
a coupled DEVS with the structure shown in Fig.3.
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Figure 3: Coupling scheme for the QSS simulation of
hybrid systems

Here the discrete part is a DEVS model which re-
ceives the events representing changes in the state
derivatives as well as changes in the input trajecto-
ries.
Taking into account the generality of DEVS, the

scheme of Fig.3 can simulate any systems like (6) in
interaction with any discrete model.
There are cases in which this scheme can be simpli-

fied. As we mentioned before, when only Time Events
are considered, the DEVS model of the discrete part
will not have inputs.
Usually, the event occurrence condition is related

to a zero (or another fixed value) crossing of some
state variable. In this case, if the simulation is per-
formed with the QSS–method the event condition can
be detected directly by the corresponding quantized
integrator. This can be easily done provided that the
quantization functions contain quantization levels at
the given fixed crossing values.

IV. SIMULATION EXAMPLES

A. DC-AC inverter circuit

In the inverter circuit shown in Fig.4 the set of switches
can take two positions. In the first one the switches
1 and 4 are closed and the load receives a positive
voltage while the other is the opposite.
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Figure 4: DC-AC Full Bridge Inverter

The system can be represented by the following dif-
ferential equation:

d

dt
iL = −R

L
· iL + sw · Vin (8)

where sw is 1 or −1 according to the position of the
switches.
The system was simulated with the QSS2–method,

using a scheme like the shown in Fig.3 but the discrete
block was just an event generator producing events
when the variable sw changes.
These event times where calculated according to a

PWM strategy with a carrier frequency of 1.6kHz and
a modulating sinusoidal signal of the same amplitude
and a frequency of 50Hz. Thus, the number of events
per cycle was 64.
Using parameters R = 0.6Ω, L = 100mHy and

Vin = 300V the simulation starting from iL = 0 and
taking a quantization ∆iL = 0.01A gave the result
shown in Figs.5–6.
The final time of the simulation was 1 second and

then the number of cycles was 50. This gives a total of
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3200 changes in the position of the switches. Despite
this number of events, the simulation was completed
after only 3100 internal transitions quantized integra-
tor. Thus, the total number of steps was 6300.

In this case, since the commutations do not pro-
duce any structural change (they only affect the input
voltage sign), Ineq.(5) can be applied and it can be
ensured that the error in the trajectory of iL obtained
is always less than 10mA.

The same system was simulated with all the discrete
time methods implemented in Simulink. The best re-
sult was obtained with the fixed step ode5 algorithm
(5th order), which needed more than 50000 steps to
obtain an acceptable result.

The simulations were repeated with variable step
methods enforcing additional calculations at the event
times. Using the tolerance obtained with QSS2,
the ode23 (which now showed the best performance)
needed more than 20000 steps to complete the simu-
lation.

However, this trick –enforcing calculations at pre-
determined time instants– cannot be used in general
cases since often the event times are not known before
the simulation starts.

B. A ball bouncing downstairs

Consider a ball moving in two dimensions (x and y)
and bouncing downstairs. It will be assumed that the
ball has a model when it is in the air –with the presence
of friction– and a different model (a spring–damper)
in the floor.
According to this idea, the model can be written as

ẋ = vx

v̇x = −ba
m

· vx

ẏ = vy

v̇y = −g − ba
m

· vy −

−sw · [ b
m

· vy +
k

m
(y − int(h+ 1− x))]

where sw is equal to 1 in the floor and 0 in the air.
Function int(h + 1 − x) gives the height of the floor
at a given position (h is the height of the first step).
Note that we are considering steps of 1m by 1m.
The state events are produced when x and y verify

the condition y = int(h+ 1− x)
Thus, the simulation model structure results simi-

lar to the one shown in Fig. 3 but without the implicit
block. The discrete model should receive the events
with the derivatives of x and y and send events when
the event condition is achieved (to calculate that, it
just has to find the roots of a second degree polyno-
mial).
The system was then simulated using parameters

m = 1, k = 100000, b = 30, ba = 0.1, initial conditions
x(0) = 0.575, vx(0) = 0.5, y(0) = 10.5, vy = 0 and a
quantum of 0.001 in the horizontal position, 0.0001 in
the vertical position and 0.01 in the speeds.
The first 10 seconds of simulation were completed

after 2984 internal transitions at the integrators (39 at
x, 5 at vx, 2420 at y and 520 at vy). The trajectories
do not differ appreciably from what can be obtained
with a fixed step high order method using a very small
step size. Fig.7 shows the simulation results.
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Figure 7: x vs. y in the bouncing ball example

It is important to remark that each step only in-
volves very few calculations and the sparsity is well



exploited. In fact, the internal transitions in x does not
affect any other subsystem. The steps in vx give events
to itself, to the integrator which calculates x and to the
discrete model which predicts the next event occur-
rence. Similarly, the internal events of y only provoke
external events to the integrator corresponding to vy

when the ball is in the floor and finally, the events pro-
duced in vy are propagated to itself, to the integrator
which calculates y and to the discrete model.
As a result, the discrete model receives 525 events

and it produces only 26 internal transitions.
The same model was simulated with Simulink, us-

ing all the fixed and variable step algorithms. To get
similar results, fixed step methods require more than
10000 steps (ode5) while variable step methods need
more than 5000 steps (ode23). Here, each step involves
calculations in the whole system.

V. CONCLUSIONS

The use of QSS and QSS2–methods offers an efficient
and very simple alternative for the simulation of hybrid
systems. Their discrete event nature and the facilities
to detect discontinuities make the difference with re-
spect to classic algorithms.
In the examples analyzed, the methods showed a

performance clearly superior to all the complex im-
plicit, high order and variable step methods imple-
mented in Simulink.
Future work should extend the theoretical stability

and error bound analysis to general discontinuous sys-
tems in order to establish conditions which ensure the
correctness of the simulation. What was done in the
DC-AC inverter example might constitute a first step
in this direction which could be extended for general
systems with time events.
Finally, in the bouncing ball example, the use of a

bigger quantum in the position while the ball was in
the air would have resulted in an important reduction
of the number of calculation without affecting the er-
ror.
This observation leads to the convenience of using

some kind of adaptive quantization. If such a result
can be obtained together with the use of higher order
approximations (a third order approximation QSS3
could be easily imagined) the quantization–based ap-
proximations may become a powerful tool for the sim-
ulation of general hybrid systems.
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