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Abstract

This paper introduces Quantized-State Control, a method for the digital asynchronous

implementation of controllers designed in continuous time. Through the quantization of its

state and input variables the original continuous controller is mapped into a discrete event

system within the DEVS formalism framework that can be implemented in a digital device.

It is shown that, under certain conditions, this implementation in general nonlinear sys-

tems approximately conserves the stability properties of the original continuous control sys-

tem (CCS). A design algorithm is provided which allows to obtain a desired ultimate bound

and region of attraction.

In the case of LTI systems, it is proven that the difference between the closed loop

trajectories of both systems is always bounded by a constant which stands even in presence

of any piecewise constant reference. The mentioned constant can be calculated by a closed

formula which depends only on the system parameters and the quantization adopted.

Further advantages of the methodology are the improvement of the dynamic response

and the reduction of the quantization effects of the converters and the computational costs

with respect to classic discrete time implementations. These facts and the use of the design

algorithm are illustrated through the simulation of different examples.

Keywords: Digital Control, Quantized Control, Discrete Event Systems, Asynchronous Con-

trol Systems.
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1 Introduction

Practical implementations of most control systems require the use of digital devices. Due to the

different nature of the signals present at the inputs and outputs of the digital controller and the

continuous-time plant, the interconnection between them must be made through A/D and D/A

converters.

On one hand, the classic A/D conversion techniques perform synchronous sampling leaving

the plant without control between successive sample instants. This fact usually provokes a lost of

performance in the dynamic response and affects the regions of attraction in nonlinear systems.

This is due to the fact that a fixed sampling time which is adequate when the state is near an

equilibrium point could be completely useless when the state is far away from that point.

On the other hand, the A/D conversions use only a finite number of bits producing undesir-

able effects such as steady state errors and oscillations.

Because of quantization problems attracting sets must be considered instead of equilibrium

points, and ultimate boundedness of solutions instead of asymptotic stability. There are many

works in the literature which study these quantization effects in linear systems –see (Miller et al.,

1988; Miller et al., 1989; Farrel and Michel, 1989) for instance– which were also extended to

nonlinear plants (Hou et al., 1997) and multirate control (Hu and Michel, 1999).

Instead of studying the effects of the quantization after the controller is designed, some works

attempt to deal with the quantization at the design stage. In (Delchamps, 1990) the problem

of stabilizing a discrete time linear system taking into account the quantization in the state

measurement is studied. In (Brockett and Liberzon, 2000) there is also an study over CCS and

the problem of the impossibility of convergence to the equilibrium points is solved by allowing

the quantizers to change the size of the quantization intervals.

Since recently, quantization of variables is being applied for simulation purposes. In (Zeigler

and Lee, 1998) the authors proposed that continuous time systems can be simulated through

the quantization of some variables instead of the discretization of time. They also showed that

the resulting system can be described by a discrete event model within the DEVS formalism

(Zeigler et al., 2000).

This idea was taken in (Kofman and Junco, 2001), where the authors introduced the concept
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of Quantized State System (QSS), that are continuous time systems where the state variables are

quantized through hysteretic quantization functions. It has been shown that QSS with piecewise

constant input trajectories can be exactly represented by DEVS models. Thus, the addition of

the mentioned quantization functions to a continuous model transforms it into a QSS that can

be simulated in a digital device.

The possibility of simulating DEVS models in real time (Zeigler and Kim, 1993) motivated

the idea of using QSS as controllers and the definition of Quantized State Control (QSC), which

was first introduced by the author in (Kofman, 2001). There, and making use of an asynchronous

sampling technique described in (Sayiner et al., 1993), a control scheme is proposed where the

time discretization is theoretically avoided.

In that way, QSC attacks simultaneously the both mentioned problems. On one hand, it

does not leave the plant without control except when their outputs do not suffer significative

modifications. On the other hand, QSC takes into account the quantization effects at the design

stage allowing to reduce them to a desired bound.

The design of a QSC controller consists just in choosing the quantization to be applied at

each state variable of a previously designed continuous controller as well as the quantization at

the asynchronous converters. Then, an equivalent DEVS model can be easily found and digitally

implemented.

In this work, we reformulate and extend the original definition of QSC and study their

general properties in nonlinear and linear systems.

In the mentioned introductory paper, a theorem was presented showing that –under certain

conditions– the QSC implementation of a continuous designed controller can ensure ultimately

boundedness of the trajectories. Moreover, following an algorithm –which was given– it was

possible to choose the quantization in order to achieve a desired ultimate bound and region of

attraction of the CCS equilibrium point.

Here, we reformulate both, the theorem and the algorithm in order to arrive to less restrictive

results allowing the use of the methodology also in time variying plants.

Then, the analysis is carried to the particular case of LTI systems where it is shown that the

QSC system trajectories are always ultimately bounded (for any adopted quantization) provided

that the CCS is asymptotically stable. Moreover, in that case it is proven that the trajectories
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of the original CCS and the QSC cannot differ from each other in more than a given bound

which can be calculated by a closed formula.

While for the nonlinear case the basic analysis tool consists in the Lyapunov theory, in the

linear case we make use of a geometric study (Kofman, 2002) which allows arriving to a much less

conservative result. The mentioned formula can be used to design the quantization according

to the desired performance, replacing the Lyapunov-based algorithm deduced for the general

nonlinear cases.

Finally, different examples of QSC in linear and nonlinear system are provided in order to

illustrate the use of the design algorithm and formula and to show some advantages of the QSC

methodology with respect to the classic discrete time implementation.

The paper is organized as follows: Section 2 recalls the principles of the Quantized State

Systems. Then, the definition of QSC, the stability properties and the design algorithm are in-

troduced in Section 3. Further, the particularization of the analysis for LTI systems is performed

in Section 4 and finally Section 5 presents the mentioned examples.

2 Quantized State Systems

As it was already mentioned, QSS is based on the hysteretic quantization of the state variables.

This quantization transforms the state trajectories into piecewise constant ones allowing the

system representation in terms of the DEVS formalism.

Before giving the QSS definition, the concept of quantization function with hysteresis will

be recalled

2.1 Quantization Functions

Definition 1. Let Q = {Q0, Q1, ..., Qr} be a set of real numbers where Qk−1 < Qk with 1 ≤ k ≤
r. Let Ω be the set of piecewise continuous real valued trajectories and let xi ∈ Ω be a continuous

4



trajectory. Let b : Ω→ Ω be a mapping and let qi = b(xi) where the trajectory qi satisfies:

qi(t) =




Qm if t = t0

Qk+1 if xi(t) = Qk+1 ∧ qi(t−) = Qk ∧ k < r
Qk−1 if xi(t) = Qk − ε ∧ qi(t−) = Qk ∧ k > 0
qi(t−) otherwise

(1)

and

m =




0 if xi(t0) < Q0

r if xi(t0) ≥ Qr

j if Qj ≤ x(t0) < Qj+1

Then, the map b is a hysteretic quantization function.

The discrete values Qk are called quantization levels and the distance Qk+1 −Qk is defined

as the quantum, which is usually constant. The width of the hysteresis window is ε. The values

Q0 and Qr are the lower and upper saturation bounds. Figure 1 shows a typical quantization

function with uniform quantization intervals.

[Figure 1 about here.]

A fundamental property of a Quantization Function with hysteresis when t ≥ t0 and Q0 ≤
x(t) ≤ Qr is given by the following inequality

|q(t)− x(t)| ≤ max
1≤i≤r

(Qi −Qi−1, ε) (2)

2.2 Quantized State Systems

Consider the State Equation System given by:


ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(3)

Related to this system, an associated Quantized State System (Kofman and Junco, 2001) is

defined as follows: 

ẋ(t) = f(q(t), u(t))

y(t) = g(q(t), u(t))
(4)
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where q(t) and x(t) are related (componentwise) by quantization functions with hysteresis. The

components of vector q(t) are called quantized variables.

The most significant properties of QSS are related to the form of the trajectories. Provided

that the inputs have piecewise constant trajectories and function f is continuous and bounded

in any bounded domain, the following properties are satisfied:

• The quantized variables have piecewise constant trajectories

• The state variable derivatives have also piecewise constant trajectories

• The state variables have continuous piecewise linear trajectories

The accomplishment of these properties requires the use of hysteresis in the quantization. If

non hysteretic –or memoryless– quantization were used, infinitely fast oscillations could occur

and the resulting trajectories would not be piecewise constant or linear.

As a consequence of these properties the QSS can be exactly represented by a discrete event

model within the DEVS formalism framework. The DEVS model related to a generic QSS, the

proof of the mentioned properties and an extended explanation about the necessity of using

hysteresis can be found in (Kofman and Junco, 2001).

It is interesting to mention here that DEVS allows to represent systems with an infinite

number of possible states (the set of possible states could be �n for instance). In that way, it

permits the representation and simulation of any QSS in a deterministic way, for any quanti-

zation adopted (provided that it is hysteretic). This fact contrasts with what happens when

systems under quantization mesurement are represented by less general formalisms like Petri

Nets or Finite Automata. In that case, the partition of the state–space should be made follow-

ing special techniques in order to arrive to deterministic models (Lunze et al., 1999).

The possibility of representing a QSS by a DEVS model and the fact that DEVS models can

be simulated in real time by digital devices1 (Zeigler and Kim, 1993) suggest the use of QSS as

digital controllers.
1DEVS representation of QSS is exact. However, real time simulation of DEVS has errors related to the

temporal resolution and the round-off introduced by the digital device
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3 Quantized State Control

3.1 QSC Definition

Consider the CCS consisting of plant and controller, Eqs. (5) and (6) respectively, and their

(ideal) interconnection, Eq. (7).


ẋp(t) = fp(xp(t), up(t), t)

yp(t) = gp(xp(t), t)
(5)



ẋc(t) = fc(xc(t), uc(t), ur(t))

yc(t) = gc(xc(t), uc(t), ur(t))
(6)

up(t) = yc(t), uc(t) = yp(t) (7)

Note that ur(t) represents an input reference.

Definition 2. A QSS associated to a continuous controller (6) is called Quantized State Con-

troller (QSC controller).

Definition 3. A QSC system is defined as a control scheme composed by a continuous plant

and a QSC controller connected through asynchronous A/D and D/A converters.

[Figure 2 about here.]

Figure 2 shows a block diagram representation of a QSC system. The QSC implementation of

the controller transforms (6) into the new set of equations:


ẋc(t) = fc(qc(t), uc(t), ur(t))

yc(t) = gc(qc(t), uc(t), ur(t))
(8)

where the difference between the components of qc and xc is bounded according to (2).

The asynchronous sampling scheme (Sayiner et al., 1993) implies that the A/D conversions

are performed only when the analog input and the digital output of the converters differ in a

quantity corresponding to one quantization interval. Then, they can be seen as quantization

functions with hysteresis where the quantization intervals and the hysteresis windows have the

same size. In a similar way, the D/A converters can be represented by quantization functions
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without hysteresis (ε = 0). Thus, the presence of the asynchronous converters transforms (7)

into:

up(t) = ycq(t), uc(t) = ypq(t) (9)

where the variables ycq(t) and ypq(t) are the quantized versions of the plant and the controller out-

put variables, which differ componentwise from the continuous yc and yp in a quantity bounded

by an inequality like (2).

3.2 Stability of QSC

The CCS closed loop equations can be derived from Equations (5)–(7) arriving to

ẋp = fp(xp, gc(xc, gp(xp, t), ur), t)

ẋc = fc(xc, gp(xp, t), ur)
(10)

Let us define

∆xc(t) = qc(t)− xc(t) (11a)

∆yp(t) = ypq(t)− yp(t) (11b)

∆yc(t) = ycq(t)− yc(t) (11c)

Thus, from these definitions and Equations (5), (8) and (9), the QSC closed loop equations can

be written as: 

ẋp = fp(xp, gc(xc +∆xc, gp(xp, t) + ∆yp, ur) + ∆yc, t)

ẋc = fc(xc +∆xc, gp(xp, t) + ∆yp, ur)
(12)

Then, the QSC system (12) can be seen as a perturbed version of the original CCS (10). More-

over, taking into account inequality (2) the perturbations in QSC are bounded componentwise

by the corresponding quantum. This is true provided that the variables xc, yp and yc do not

reach the corresponding saturation bounds. From here to the end, it will be considered that the

non–saturation region is enough large so that the trajectories do not leave it.

Based on this observation, the properties of the QSC implementation of a CCS can be studied

by looking at the effects of bounded perturbations in the original closed loop system.

When the reference trajectory ur(t) is zero (or constant), the QSC system (12) can be

rewritten as

ẋ = f(x+∆x,∆y, t) (13)
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where x , [xp, xc]T , ∆x , [0,∆xc]T , ∆y , [∆yp,∆yc]T , and f , [fp, fc]T .

With these definitions, the CCS (10) becomes

ẋ = f(x, 0, t) , f̃(x, t) (14)

Then, the following theorem which relates the stability properties of (14) and (13) can be stated:

Theorem 1. Let the origin be an asymptotically stable equilibrium point of the closed loop CCS

(14). Assume that function f is continuous and a continuously differentiable Lyapunov function

V (x, t) is known with

W1(x) ≤ V (x, t) ≤W2(x) (15)

∂V

∂x
· f̃(x, t) + ∂V

∂t
≤ −W3(x) (16)

∀t ≥ 0, ∀x ∈ D being D a compact set which contains the origin and Wi are continuous positive

definite functions in D.

Let Ω2a = {x|W2(x) ≤ a} with a being an arbitrary positive constant which is enough small
so that {x|W1(x) ≤ a} is a closed region inside D.

Let Ω1b
= {x|W1(x) ≤ b} being b an arbitrary positive constant (b < a) enough small so that

Ω1b
⊂ Ω2a .

Then, a quantization can be found so that the QSC system trajectories starting in Ω2a finish

inside Ω1b
, reaching this region in finite time.

Proof. The derivative of V (x, t) along the solutions of the QSC system (13) is

V̇ (x, t) =
∂V

∂x
· f(x+∆x,∆y, t) + ∂V

∂t

=
∂V

∂x
· f(x, 0, t) + ∂V

∂t
+
∂V

∂x
· (f(x+∆x,∆y, t)− f(x, 0, t))

Then, using (16) it results that

V̇ (x, t) ≤ −W3(x) +
∂V

∂x
· (f(x+∆x,∆y, t)− f(x, 0, t)) (17)

Consider the sets Ω2b
= {x|W2(x) ≤ b} and Ω1a = {x|W1(x) ≤ a}. From the hypotesis made

about a and b, it results that

Ω2b
⊂ Ω1b

⊂ Ω2a ⊂ Ω1a ⊂ D (18)
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Since W3(x) is positive definite in D, it is positive in Ω1,2 , Ω1a − Ω2b
. Moreover, it exists a

positive constant s where

s , min
x∈Ω1,2

W3(x) (19)

Let us define the following function

α(x,∆x,∆y, t) , −W3(x) +
∂V

∂x
· (f(x+∆x,∆y, t)− f(x, 0, t)) (20)

The continuity in functions W3 and f and the fact that V is continuously differentiable implies

that α is continuous. From the definition of α and Eq.(19) it results that

α(x, 0, 0, t) ≤ −s ∀x ∈ Ω1,2,∀t ≥ 0 (21)

Let αM be the function defined by

αM (∆x,∆y) , sup
x∈Ω1,2,t≥0

(α(x,∆x,∆y, t)) (22)

It can be easily seen that αM is continuous and αM (0, 0) ≤ −s. Then, for any positive number
s1 < s a positive constant r can be found so that the condition

‖(∆x,∆y)‖ ≤ r (23a)

implies that

αM (∆x,∆y) ≤ −s1 (23b)

and then it results that

V̇ (x, t) ≤ α(x,∆x,∆y, t) ≤ αM (∆x,∆y) ≤ −s1 (24)

in Ω1,2.

From here to the end, the proof follows Theorem 5.3 of (Khalil, 1996).

Let Ωa,t = {x|V (x, t) ≤ a} and Ωb,t = {x|V (x, t) ≤ b} be time variable sets. From (15) it

results that

Ω2b
⊂ Ωb,t ⊂ Ω1b

⊂ Ω2a ⊂ Ωa,t ⊂ Ω1a ⊂ D (25)

The border of Ωa,t is inside Ω1,2, where V̇ (x, t) is negative. It means that the trajectories of the

QSC system (13) cannot abandon Ωa,t.
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Then, any trajectory starting in Ω2a cannot abandon Ω1a .

The border of Ωb,t is also inside Ω1,2. Then the trajectories cannot abandon this time variable

set.

To complete the proof, we need to ensure that the trajectories initiated in Ω2a ⊂ Ωa,t reach

Ωb,t in a finite time.

Let φ(t) be a solution of (13) starting in Ωa,t (i.e. V (φ(0), 0) ≤ a) and let us suppose that

V (φ(t), t) > b ∀t (26)

then we have V̇ (φ(t), t) ≤ −s1 and after

t1 ,
a− b
s1

(27)

it results that V (φ(t1), t1) ≤ b which yields a contradiction. Then, the region Ωb,t must be

reached before the finite time t1.

Since Ωb,t ⊂ Ω1b
the trajectory also reaches the set Ω1b

before that time.

Equation (23a) gives the maximum perturbation allowed to ensure the achievement of the

proposed goal (i.e. the region of attraction Ω2a and the ultimate bound in Ω1b
). Since the

maximum perturbation in each variable is given by the corresponding quantum, this equation

should be used to choose the quantum at the different controller state variables and converters

completing in that way the QSC design.

Observe that Ω2a is also the estimation of the region of attraction of the CCS using the

Lyapunov function V . Then, a QSC implementation can be found so that it conserves the

estimated region of attraction.

The presence of quantization destroyes the asymptotic stability. However, ultimately bound-

edness of the solutions can be still ensured. Moreover, the ultimate region Ω1b
can be arbitrarily

chosen. Anyway, if it is chosen to be too small then the quantum will also result too small and

the computational costs will increase over what can be practically implemented since the rate

of events in the controller is approximately proportional to the inverse of the quantum.
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3.3 An algorithm for QSC implementation

The design of a QSC contoller can be divided in two steps. The first one is the design of the

continuous controller, which can be done following any technique.

The second step is the choice of the quantization at each variable. The use of a very small

quantum yields solutions which are very closed to the trajectories of the CCS. This is due to the

property of convergence which tells that –under locally Lipchitz conditions on the functions–

the solutions of the QSC system go to the solutions of the CCS when the quantization go to

zero (Kofman, 2001). In that way, and also according to Theorem 1, the ultimate bound can be

reduced to arbitrary small values.

However, as it was already mentioned, the use of a small quantum increases the number of

events at the controller and the digital device can fail in its attempt to give the correct output

values at the required time.

Therefore, there is always a trade–off between accuracy and practical considerations related

to the computational costs. Then the idea is to exploit Theorem 1 in order to choose the

quantization according to some essential features (region of attraction and ultimate bound). In

that way, the quantization adopted will be just as small as necessary to ensure those properties

and –provided that the CCS is not too fast– the digital device will be able to correctly implement

the resulting QSC controller.

The translation of these ideas into a design algorithm for QSC can be written as follows:

1. Design a continuous controller and calculate the Lyapunov function V (x, t) and the func-

tions Wi(x) according to (15)–(16) for the closed loop CCS.

2. Choose the QSC region of attraction Ω2a and the ultimate region Ω1b
together with the

constants a and b.

3. Obtain the perturbed closed loop function f according to (13).

4. Obtain function α according to (20) and αM according to (22).

5. Calculate constant s according to (19) and choose the positive constant s1 < s. If the goal

is just to ensure ultimately boundedness s1 should be very small. Otherwise, if the speed

of convergence is also important, it can be chosen taking into account (27).
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6. Compute the value of r according to (23).

7. Choose the quantization at the controller state variables and converters so that (23a) is

satisfied.

It can be easily seen that this procedure leads to a QSC controller which ensures region of

attraction Ω2a and ultimate region Ω1b
.

4 QSC in LTI Systems

The analysis of Section 3 can be also applied to the particular case of linear time invariant

systems.

However, the design algorithm is not very practical and its use can lead to conservative

results. This is due to the fact that the Lapunov analysis does not make use of the system

geometrical structure.

A different and less conservative way to study the effects of perturbations in LTI systems

was made in (Kofman, 2002), whose main result will be applied here to study the properties of

QSC.

4.1 Closed-Loop Equations

Consider the Continuous LTI plant (28) and controller (29).


ẋp(t) = Ap · xp(t) +Bp · up(t)

yp(t) = Cp · xp(t)
(28)



ẋc(t) = Ac · xc(t) +Bc · uc(t) +Br · ur(t)

yc(t) = Cc · xc(t) +Dc · uc(t) +Dr · ur(t)
(29)

With the interconnection given by (7), the following closed loop equation is obtained.

ẋ(t) = A · x(t) +B · ur (30)

where

x(t) =


 xp(t)

xc(t)


 , A =


 Ap +BpDcCp BpCc

BcCp Ac




13



and

B =


 BpDr

Br




The QSC implementation of the controller modifies (29) which can be rewritten as


ẋc = Ac · qc +Bc · uc +Br · ur

yc = Cc · qc +Dc · uc +Dr · ur

(31)

As in the general case, the effects of the A/D and D/A asynchronous converters is given by

(9). Thus, taking into account that equation, (28), (31) and the definition of the perturbation

variables (11), the use of the QSC scheme transforms equation (30) into

ẋ = A(x+∆x) + F ·∆y +B · ur (32)

where x, ∆x and ∆y have the same definition than in Eq.(13) and

F =


 BpDc Bp

Bc 0


 (33)

4.2 Error in LTI QSC

Let x(t) and x̃(t) and be solutions of (30) and (32) starting from the same initial condition

x(t0) = x̃(t0) = x0. Then the error

e(t) = x̃(t)− x(t) (34)

can be seen as a bound for the lost of performance due to the QSC implementation.

From (30), (32), (34) and the definitions of x(t) and x̃(t) we have

ė(t) = A · (e(t) + ∆x(t)) + F ·∆y(t)

e(t0) = 0

Since the components of ∆x and ∆y are bounded by the corresponding quantum size adopted,

Theorem 1 of (Kofman, 2002) can be applied in order to quantify the error due to the QSC

scheme.
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Theorem 2. Let x(t) and x̃(t) be trajectories of a LTI CCS and its QSC implementation starting

from the same initial condition and let A be the evolution matrix of the continuous closed loop

system. If A is Hurwitz and diagonalizable, the difference between both trajectories is always

bounded by

|x̃(t)− x(t)| ≤ |V |(|Re(Λ)−1Λ||V −1|∆qx + |Re(Λ)−1V −1F |∆qy) (35)

where2 ∆qx is the vector of quantum sizes in the plant and controller state variables (all the

components corresponding to the plant are zero), ∆qy is the vector of quantum sizes in the plant

and controller output variables (introduced by the A/D and D/A converters respectively), the

matrix F is defined according to (33), Λ is a diagonal matrix of eigenvalues of A and V is a

corresponding matrix of eigenvectors.

The proof is straightforward using the mentioned theorem. Inequality (35) can be used as

a design formula to obtain the quantization in the controller and converters according to the

deviation allowed from the CCS trajectories.

A very important remark is that the mentioned bound does not depend on the initial condi-

tion or in the reference trajectory (ur(t)). The only restriction is that ur(t) must be piecewise

constant in order to guarantee that the QSC can be exactly represented by a DEVS model and

then implemented on a digital device.

Theorem 2 says that the difference between the closed loop CCS trajectories and the cor-

responding QSC are always bounded. In that way, if the original continuous controller ensures

asymptotic stability, its QSC implementation ensures ultimately boundedness for any quantiza-

tion adopted.

Moreover, the bound stands for all t and this fact can produce an important improvement

in the dynamic response with respect to discrete time approximations.

The closed form of Inequality (35) gives also a useful tool for the design of the quantization.

The design procedure then consists just in choosing the maximum allowed error in each variable

and then in finding the appropriate values of ∆qx and ∆qy to satisfy the inequality.
2The symbol | · | denotes the componentwise modulus of a vector or matrix. For two vectors of the same

dimension a and b, we say a ≤ b if the inequality stands for all their components. This implies that (35) expresses
a bound for each state variable
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5 Examples

5.1 A PI controller example

Consider the plant (28) with

Ap =


 0 1

−1 −4


 , Bp =


 0

1


 , Cp =

[
1 0

]
(36)

A PI controller with parameters KP and KI can be written in the form of (29) with Ac = 0,

Bc = −1, Br = 1, Cc = KI , Dc = −KP and Dr = KP . Thus, using KP = KI = 10, the closed

loop evolution matrix is

A =




0 1 0

−11 −4 10

−1 0 0




A possible matrix of eigenvectors (calculated with Matlab) is

V =



0.0085 + j0.342 0.0085− j0.342 0.5452

−0.825− j0.433 −0.825 + j0.433 −0.734
−0.108 + j0.064 −0.108− j0.064 0.4049




Taking ∆qc = ∆yp = 0.01 and ∆yc = 0.1, the error bound according to (35) is 0.1443, 0.3383

and 0.0679 in each state variable of the plant and controller respectively. Thus, the maximum

error on the plant oputput is bounded by 0.1443. Figure 3 shows the evolution of the plant

output with the continuous controller and the QSC controller when the reference is a step of

amplitude 10. Figure 4 shows the difference between both trajectories. The maximum difference

was 0.1399 which is near the theoretical bound.

[Figure 3 about here.]

[Figure 4 about here.]

5.2 An inverted pendulum control

The model of the plant and the design of the continuous controller of this example were taken

from (Messner and Tilbury, 1998).

Consider the inverted pendulum of Figure 5
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[Figure 5 about here.]

Using parameters M = 0.5; m = 0.2; b = 0.1 (friction of the cart); J = 0.006; g = 9.8; and

l = 0.3 (length to pendulum center of mass), a linearized model around θ = π is given by the

equations: 


ẋ

ẍ

Φ̇

Φ̈



=




0 1 0 0

0 −0.181 2.672 0

0 0 0 1

0 −0.454 31.18 0







x

ẋ

Φ

Φ̇



+




0

1.818

0

4.545



u

where Φ , θ − π is the deviation angle from the vertical position.

The goal is to implement a control for the cart position. The variables measured are x and

Φ. Thus, the plant output equations can be written as

y =


 1 0 0 0

0 0 1 0







x

ẋ

Φ

Φ̇




Following a LQR design with weights wx = 5000 and wΦ = 100 and then using a full state

observer with estimator poles placed at p1 = 40, p2 = 41, p3 = 42 and p4 = 43 the resulting

controller can be written in the form of (29), where

Ac =




−82.64 1 1.037 0

−1570 68.61 148.9 −38.04
1.385 0 −83.18 1

397.6 171.5 2209 −95.11




Bc =




82.64 −1.037
1699 −40.22

−1.385 83.18

−76.18 1760



;Br =




0

−128.6
0

−3.214




Cc =
[
70.71 37.83 −1055 −20.92

]
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and

Dc =
[
0 0

]
;Dr = −70.71

For the QSC digital implementation of the controller, the following quantization sizes were

adopted:

∆qx =




0.001

0.015

0.002

0.04



; ∆qy =



0.002

0.004

2




The QSC performance was compared with a classic discrete controller obtained from the dis-

cretization of the continuous controller. The sampling time of the classic digital controller was

taken as Ts = 0.01. In this case, we also considered the presence of A/D and D/A converters

with the same quantization than in the QSC control (i.e. 0.002 in the position, 0.004 in the

angle and 2 in the controller output).

Figures 6-8 show the trajectories obtained with the continuous time controller (without

quantization), with the QSC controller and the classic discrete time controller.

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

The first observation is that the QSC shows a much better performance during the transient

(see Figure 7) and it reduces the final oscillations.

The number of A/D conversions performed by the QSC converters in the 5 seconds of simu-

lation was 211 and 185 in the position and angle respectively while the classic digital controller

performs 5/0.01 = 500 conversions in each variable. Similarly, the number of D/A conversions in

the QSC control was 303. The classic discrete time controller also performs 500 D/A conversions.

If we take into account what happens from t = 3 to t = 5 (during the steady state), we can

see that the QSC only performs 29 A/D conversions in the postition, 44 A/D conversions in

the angle and 76 D/A conversions while the discrete time controller performs 200 conversions

in each variable. The reduction of the computational costs is evident.
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These advantages are paid with more calculations at the controller (the number of changes in

the internal variables is 1600 against the 500 in the discrete time controller). However, the time

required to perform A/D and D/A conversions is always much bigger than the time used for a

simple calculation. Anyway, the number of calculations at the controller can be also reduced

using a different realization. An interesting alternative is to use a diagonal –or block-diagonal–

evolution matrix Ac. In this way, the QSS simulation becomes much more efficient. In one hand,

the number of changes in the quantized variables is reduced. In the other hand, each transition

involves calculations only in the state which is actually changing (one of the most important

features of QSS simulation is that it exploits the sparsity properties). In our example, the use

of a block diagonal controller reduces the number of calculations to 547 in 5 seconds obtaining

a similar performance.

It is also interesting to observe that the fastest pole of the closed-loop system is placed at 43.

Thus, the mean sampling frequencies in the QSC during the steady state are below the system

bandwidth. Thus, the QSC scheme works violating the Nyquist frequency. It is well known that

a sampled data system working below that frequency will be unstable. QSC can work using

that frequency because the equilibrium point in the QSC scheme is in fact unstable (but the

solutions are ultimately bounded).

Finally, it should be mentioned that the use of inequality (35) gives a quite conservative

bound in this case. The error bound in x(t) is 3.08, which is about 300 times bigger than the

error observed in Figure 6. Anyway, a Lyapunov analysis gives a bound of 9.6 × 109, which is

completely useless for the design.

5.3 A time varying example

The unstable time varying plant


ẋp = xp · (1 + sin t+ cos t) + up

yp = (2 + cos t) · xp

(37)

can be stabilized by the controller


ẋc = −xc + uc

yc = −xc − uc

(38)
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The resulting closed loop system can be written as


ẋp = −(1− sin t) · xp − xc

ẋc = (2 + cos t) · xp − xc

(39)

Here, the Lyapunov candidate

V (xp, xc, t) = x2
p +

1
2
x2

c +
1
2
x2

p cos t (40)

verifies (15) with

W1(xp, xc) =
1
2
x2

p +
1
2
x2

c (41)

W2(xp, xc) =
3
2
x2

p +
1
2
x2

c (42)

The orbital derivative is

∂V

∂x
· f(x, t) + ∂V

∂t
= (2 + cos t) · (sin t− 1) · x2

p − x2
c −

1
2
x2

p sin t (43)

which satisfies (16) with

W3 = −1
2
x2

p − x2
c (44)

Then, the closed loop CCS is asymptotically stable and the algorithm resulting from Theorem

1 can be used to design the QSC controller.

The first step for the QSC design consists in choosing the region of attraction and the

ultimate bound. Since inequalities (15)–(16) stand in �2 (i.e. the CCS stability is global) it is

not necessary to restrict the region of attraction except for chosing the saturation values. In

this case, the choice of Ω2a does not affect the calculations.

The ultimate bound Ω1b
will be chosen with b = 0.5. Then, taking into account (41) it

results that Ω1b
= {x ∈ �2|‖x‖ ≤ 1}.

The perturbed equations (13) can be written as


ẋp = −(1− sin t) · xp − xc −∆xc +∆yc −∆yp

ẋc = (2 + cos t) · xp − xc −∆xc +∆yp
(45)

and then, from (20) function α(x,∆x,∆y, t) results

α = −x2
c −

1
2
x2

p + xp · (2 + cos t) · (−∆xc +∆yc −∆yp) + xc · (−∆xc +∆yp) (46)

20



Although the maximum αM in (22) cannot be easily obtained, it can be bounded as follows

α ≤ −1
2
‖x‖2 +

√
9 · (|∆xc|+ |∆yc|+ |∆yp|)2 + (|∆xc|+ |∆yp|)2 · ‖x‖

≤ ‖x‖ · (−1
2
‖x‖+

√
9 · (|∆xc|+ |∆yc|+ |∆yp|)2 + (|∆xc|+ |∆yp|)2)

and then, taking into account that ‖x‖ > 1/3 in Ω1,2, it results that

αM ≤ − 1
18
+

√
(|∆xc|+ |∆yc|+ |∆yp|)2 + 1

9
(|∆xc|+ |∆yp|)2

Then, taking the quantum equal to 0.018 in the controller and converters we can ensure that

αM ≤ −0.0093 (47)

in Ω1,2, which implies that the trajectories finish inside Ω1b
in finite time, with a minimum speed

s1 = 0.0093.

Figures 9–14 show the simulation results for an initial condition xp = 5, xc = 0.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

Figure 14 also shows that the design was very conservative. The ultimate bound observed in the

simulation is less than 0.03 (in norm 2) which is more than 30 times smaller than the calculated.

There are two reasons which can explain this. The first one is just what was mentioned

above: Lyapunov analysis often leads to conservative estimations of the ultimate bound. The

second reason is that in this case the D/A converter does not introduce any perturbation since

it is exactly matched with the quantizer of xc and the A/D converter.

This last fact can be easily observed in the output equation of system (38), which in QSC

adopts the form of

yc = −qc − uc (48)
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and then, if the quantization levels of qc and the A/D converter coincide with the quantization

levels of the D/A converter the effect of this last converter can be ignored since yc can only

adopt exactly the quantized values.

This fact constitutes another advantage of QSC since the correct matching can eliminate the

quantization effects of the D/A converters.

6 Conclusions

Quantized State Control is an alternative way to implement digital controllers designed in con-

tinuous time. Its most remarkable feature is the avoidance of time discretization which results

in an important improvement of the implementation stability properties.

Other interesting advantage is the reduction of the computational costs as a result of the

asynchronous sampling scheme. Here, the converters only take samples when it is necessary

(i.e. when they differ from the previous value in a given quantity). Similarly, the controller

internal states are recalculated under the same condition. Thus, QSC can be thought as a

control strategy which only acts when it has to.

The way in which QSC is implemented allows its representation as a perturbed version of the

original continuous control system. Based on previous results on perturbartion analysis not only

stability but also error bound properties were proven. Those properties –which were studied for

general nonlinear time varying plants and also particularized for LTI cases– can be also used in

a practical sense for design purposes.

As it was already mentioned the design of QSC consists just in choosing the quantum to be

used in the controller state variables and converters. The algorithms and formulas derived from

the perturbation analysis allow to make the choice so that stability and error bound properties

are theoretically ensured.

Another fact which should be remarked is related to the information used by the QSC

controller. Once the controller gets its first input value, the asynchronous A/D converters can

transmit the following values using only one bit per conversion with the sign of the change.

In a similar way –provided that there is some matching between the internal quantizers and

converters– the controller outputs can be transmitted with only one bit each time. This is
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a very important advantage in distributed control systems, where the information has to be

transmitted between sensors, controllers and actuators. Although there are some results based

on quantization to reduce the ammount of information (Elias and Mitter, 2001), the use of only

one bit was never achieved with other non–trivial control schemes.

This work opens many problems which should be treated in the future. From the practical

point of view, it is important to study the effects of the delays introduced by the implementation

on the stability properties. That study should also include a characterization of the delays which

would require some experimental work in real applications.

When it comes to theoretical aspects, the most important properties were proven for general

nonlinear time varying systems and for LTI systems. There is an intermediate case which should

be taken into account which corresponds to Linear Parameter–Varying (LPV) plants. The

example of Section 5.3 in fact corresponds to that category and although a Lyapunov analysis

could be done for that case, the result was very conservative. If the geometrical analysis for LTI

systems in Section 4 were extended for LPV plants, less conservative results might be obtained.

It is also important to study the way in which QSC affects not only the stability, region of

attraction and error bound but also other performance measures (mean square error, overshoot,

etc.).

Finally, it should be mentioned that QSS are just a small class of the wide family of DEVS

models. The possibility of obtaining different DEVS models which can act as asynchronous

controllers with nice stability properties must be also taken into account.
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Figure 3: Plant output with CCS and QSC
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Figure 8: Pendulum angle with QSC and Classic Digital Control.
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Figure 9: xp vs. t
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Figure 10: xc vs. t
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Figure 11: Final oscillations in xp vs. t

30



10 15 20 25 30 35 40 45 50
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 12: Final oscillations in xc vs. t
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Figure 13: xp vs. xc
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Figure 14: Final oscillations in xp vs. xc
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