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Abstract:

This paper introduces a new class of Bond Graph models, called
Quantized Bond Graphs (QBG), which can be “exactly” smulated by a
Discrete Event System Specification or DEVS structure [1], [2]. Standard
Bond Graphs representing Physical Systems can be approximated by QBG
for the purpose of simulation. It is shown that derivative causalities
dissapear from this kind of models, turning into causal commutations as in
Switched Bond Graphs. Stability properties of the resulting simulation
models are also studied. Finally, interesting results obtained from the
simulation of atechnical system under this approach are shown.

INTRODUCTION

Many difficulties arise when trying to simulate physical systems
directly from object- oriented descriptions like bond graphs (BG).
Structural singularities, resulting in implicit equations, are probably the
most relevant among them [3]. Stiffness is another frequently encountered
problem in current mathematical description of continuous dynamic
systems, like ODE'’s.

Different solutions have been proposed to solve these problems,
ranging from numerical methods [4] up to symbolic computation [5]. In
recent work [6],[2] advantages of simulating stiff problems within a
discrete event paradigm have been shown. In [7] an approach to discrete
event simulation of BG is developed, which is based on the approximation
of the continuous system trgjectories associated to the BG by piece-wise
polynomia trajectories.

In this paper an alternative treatment is proposed. It consists of
quantifying the mathematical relationships of storages and sources of the
BG, thus converting it into a quantized simulation model. The signals
associated to the sources are approximated by piece-wise constant
trgjectories. The same is done with the constitutive relations of the storages,
with an essentiad modification: hysteresis is added at the end of each
interval of quantization. The description resulting from this procedureis the
Quantized Bond Graph.

The paper shows that, in absence of structural singularities, the power
variables of QBG are piece-wise constant. From a result in [2] it follows
that each component of QBG can be simulated by an atomic DEV'S model
and, consequently, the whole QBG can be simulated by a coupled DEVS
structure.

A stability analysis of QBG via Lyapunov-second method is
presented, in order to specify the quantization parameter needed to preserve
the stability of the original system.

An important result presented in the paper concerns the presence of
dependent storage elements in the origina BG, which implies the
appearance of derivative causdlity. It is shown that derivative causdlity is
not an issuein QBG, then by the process of quantization it turnsinto causal
commutations as in Switched Bond Graphs [8]. This problem is simpler
than handling derivative causdity in continuous system with more
traditional techniques (numerical methods).

Simulation results are presented, comparing the performance of
DEVS smulation of QBG with that of traditional numerical integration of

differential equations (Press, et al., 1986). Results are shown, which are of
similar quality to those yielded by complex numerical methods, but are
obtained with much less computational complexity and burden.

QUANTIZED STATE SYSTEMS
The definition of quantization function with hysteresis will be
introduced next, before presenting the QBG.

Consder the finte sats  Ac ={ao,a1,..,ar,ar+},
B. ={by,....b, } , where:

ao=-¥ ar=¥;a <asu i=0..,r )
and b <b, i=0,..,r-1

From these sets, the following piecewise constant function is defined:

d@=b if al [a,a.); @

Finally, it is defined:
i i = 3
B(a.0) :;d(a) if d(a)=d(a+e) €)

1d(c) otherwise

When variable a is atrajectory in time and variable cis ¢ = a(t; ") ,

being t; the last instant of change of d(a), the function B(a,c) will be called
quantization function with hysteresis. The relationship e >0 must be
satisfied, see Fig. 1.
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Figur e 1. Quantization function with hysteresis

Now consider the following system of state and output equations:
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Then, the following system is defined as a Quantized Sate System (QSS)
associated to the system given by (4) :
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with:
Wj =W; (u;) where W isabounded piecewise constant function that

where B j is a quantization function with hysteresis defined by some finite

sts Xj y Qj and the

Bj(d;,00=d; "¢ q;l Q.
Figure 2 shows a block diagram of the Quantized State System
defined by (5).
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Figure 2. Block diagram of the Quantized Sate System.

SOME PROPERTIES OF QSS
Theorem 1: Given the Quantized State System defined in (5), with

f1,..., Tn continuous and bounded functions in any bounded domain, the

trgjectories of variables Q,...,(n are piecewise constant in any finite
interval of time.

Proof: Let Qj ={q},...,q]”} y X ={X?,...,X?} be finite sets and

€; be the parameters that define a quantization function. From equation
(2), it results for an arbitrary quantized variable:

qj £9; £9] ©

Then, variables Q ,..., 0, have bounded trgjectories. Similarly, quantized

inputs (W, ..., W,,) have bounded trajectories. Thus, f,..., T, being

bounded, it follows from equation (5) that the derivatives Xq ,...., X, have
bounded trajectories. Then, there exists a positive number M such that:

“MEX EM "] ()

A state variable can be calculated as:

t
Xj =X (to) + O ()t ©
to

From (7) and (8) it follows that:

X, (0)- M(t- t)) £x, £ (0)+M(t- t,) ©

Inequality (9) shows that the state variables have bounded trajectories
in any finite time interval. Moreover, from (7) and (8) it follows that the
state variables have continuous trajectories.

Thus, it can be easily deduced that the time that a quantized variable
needs to change its value twice is greater than:

ej (10)
tmin =—

It means that a quantized variable can only have afinite number of changes
in any finitetime interval. That implies that quantized variables have
piecewise constant trgjectories.

Theorem 2: In a Quantized State System verifying the hypothesis of
Theorem 1, the trajectories of the state variable derivatives are piecewise
constant.

Proof: It is straightforward from Theorem 1.

Theorem 3: In a Quantized State System verifying the hypothesis of
Theorem 1, the state variable trgjectories are piecewise linear.

Proof: It is straightforward from Theorem 2.

Continuous systems with piecewise constant input and output
trgjectories can be simulated by a DEVS model [6]. However, this
simulation requires the knowledge of the continuous system solution.
Simulating knowing the solution is useless, but it is possible to divide the
system into small subsystems, each of them composed by a single
integrator and its corresponding quantizer.

If theorems 1 and 2 are satisfied, each subsystem will have piecewise
constant input and output trajectories and the continuous solution of the
subsystems is straightforward, then the system can be simulated by a
coupled DEV S structure.

Remark. Equation (10) shows the need of using hysteresis. If hysteresis
were not used, (i.e. €] were zero) a quantized variable could change its

vaue an infinite number of times and the resulting discrete event model
would produce infinite events in a finite time interval, which is impossible
to be smulated.
QUANTIZED BOND GRAPHS

A simple example will be presented in order to introduce the
definition of Quantized Bond Graphs.



Figure 3. Hydraulic system

The hydraulic system of Figure 3 can be represented by the Bond
Graph of Figure 4. Let us assume that the capacitor is linear, then its
constitutive relation volume V - pressure P; can be approximated by the
law depicted in Fig. 5 (a piece-wise constant function). A “physica” tank
with such aV - P, relationship is shown in Fig. 6, where it is assumed that
Dh<<h,, y Va>>Vh. This system is still represented by the Bond Graph of
Fig. 4, now with the law of Fig. 5 as the constitutive relationship of the
capacitor. Thus, we are lead to the following (rather) informal:
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Figure 4. Bond Graph of hydraulic system
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Figure 5. Quantized characteristic of Pvs. V relationship
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Figure 6. A quantized tank.

Definition. A quantized linear capacitor is a capacitor having its
displacement vs. effort relationship as that shown in Fig. 7. To ensure the
simulability property pointed out in the previous Remark, hysteresis has
been added to the curve in Fig. 5. The extension to the nonlinear case is
immediate (see Fig. 8).

The definition of the remaining basic constituents of Quantized Bond
Graphs follows. A quantized inertia element is defined —analogously to a
quantized capacitor— as an inertia element whose flow vs. momentum
congtitutive relationship is a quantization function with hysteresis. A
quantized source is a source where the trgectory of its independent
variable (effort / flow) is a piece-wise constant and bounded function of

time. Finally, a Quantized Bond Graph is a Bond Graph where al its
storages and sources are quantized elements.
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Figure 7. Quantization P,vs. V function with hysteresis.

It isimportant to note that QBG are not direct models of real systems,
but that they can be formulated as (accurate enough) approximations of
standard, continuous variable Bond Graphs, via the quantization of their
storages and sources.

Fig. 8 shows both the continuous constitutive relationship of a
nonlinear storage, and its associated quantization function with hysteresis.
The formal definition of the quantized constitutive relation with hysteresis
for astorage is the following:

Figure 8. Nonlinear, continuous constitutive relation of a storage
element, and associated quantization function with hysteresis.

Definition: Consider that the quantization function with hysteresis defined
by (1), (2) y (3) aso satisfies (1):

B(b,c)=b "¢, bl B, (1)

Then, the quantized constitutive relation with hysteresis of the storage is
given by relation (12) below:

h(b, c) =V[B(b,c)] (12)

where v(x) is the function relating the energy and power variables of the

storage (in the continuous variable representation), and the function h isthe

resulting characteristic of the associated quantized storage element.
Equation (13) defines ¢ , the corresponding quantized energy

variable, where Xj isthe original energy variable.

SOME PROPERTIES OF QBG

Theorem 4: Consider a Quantized Bond Graph without coupled storages,
where al the passive and structural component are defined by continuous
and bounded relations. Then the trajectories of all power variables are
piece-wise constant.



Proof: Under the assumptions made, the application to the QBG of the
standard procedure for the derivation of state equations[9], yields a QSS of
the form (14):
1% = T3 (Ao Oy Wy v W) (14)
| .
|

1I.).(n = fn(qli"'iqnlwll""wm)

where, because of the assumptions, the functions fi are bounded and
continuous in any compact domain. This property, along with Theorem 1,
guarantees that the trajectories of the g;'s variables (the quantized energy
variables) are piece-wise constant. The quantized power variables are
consequentely also piece-wise constant, because they are computed from
the former variables via static relationships.

Theorem 5: Consider again a QBG satisfying the assumptions of Theorem
4. Then the trgjectories of the energy variables X; are piece-wise linear.

Proof: follows immediately from Theorem 4.

Corollary (of Theorems 4 and 5): QBG are exactly representable by a
DEVS structure. This a direct consequence of aresult in [2], stating that a
DEVS structure can exactly model systems whose input and output
trajectories are piece-wise constant.

EXACT SIMULATION OF QBG

Consider a simple quantized capacitor with integra causality.
According to Theorems 4 and 5 the flow (input) and effort (output)
trajectories are piecewise constant while the displacement (energy)
trajectory is piecewise linear. Performing a simulation of this system is
equivalent to predict when the effort will change and what value it will
adopt after that change. This caculation requires the knowledge of the
initial condition of the displacement and some extra information in order to
know theinitial effort (because of the hysteresis).

Then, assuming that the input will not change, the time to the next
change in the effort can be calculated as the division between the distance
of the displacement to the next quantized value and the actual flow (input)
value. After this change, the displacement will adopt the mentioned
quantized value. The corresponding effort value can be easily calculated
based on the knowledge of the displacement.

If the input value changes before the change of the output, the new
displacement value can be calculated according to the elapsed time and the
previous input value (the displacement increment is just the product of
those values). This new value acts as a new initial condition, and the time
to next change can be calculated using the idea explained in the last
paragraph.

Using the previous ideas, a quantized capacitor can be easily
simulated. In terms of the DEV'S formalism, the time to next change must
be associated to the time advance function. The actions performed when the
output changes will define the internal transition function while the
changes in the input value will define the external transition function. The
state of the DEVS will be composed by the last input value, the actual
displacement value and some information that allows determining which
part of the hysteresis window the output isin.

A DEVS models for a quantized inertia can be built in the same way,
and the models for the static components are trivial.

The complete QBG can be simulated by the coupling (according to
the QBG structure) of the DEVS models corresponding to the different
components.

The entire DEVS model of ageneric QBG can be found in [10].

COUPLED STORAGESIN QBG

The presence of coupled storages in continuous Bond Graphs causes
derivative causality in some storage elements. The direct simulation of this
class of systems needs similar tools to that used to solve algebraic loops.
This problem dissapearsin QBG, aswill be shown next.

Fig. 9 shows a simple “ physically quantized” hydraulic system. With
the assumption of no resistance between the tanks, both capacitors in the
bond graph are causally coupled.
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Figure 9. “ Physically Quantized” System and its Bond Graph with
causally coupled storages.

In a continuous system one capacitor should bein derivative causality,
since it is impossible that both compute effort simultaneously.
Nevertheless, the system of Fig. 9 works in a different way. Suppose
feeding the tank system from zero initial conditions. The volume in the
tank on the left begins to grow, without liquid flowing into the tank on the
right (because the height of its bottom recipient as well as the diameter of
its first column are both amost zero). The situation reverses after the
bottom recipient of the tank on the Ieft is full: the volume in the second
compartment on the right begins to grow, without liquid flowing now into
the tank on the left. The pressure at the bottom of the system is determined
exclusively by the compartment being filled at each instant of time. The
pressure changes discontinuously immediately after each compartment
becomes full. This behavior indicates that integral causality aternates in
time from one to the other capacitor, what in turn reminds the behavior of
Switched Bond Graphs, where the Switch impresses either zero flow or
zero effort. In this case (QBG), there are components forcing zero flow or a
quantized effort value (in the case of the example, where the storages are
capacitors).

The previous idea can be generalized to the case of having coupling
of many storages, including both, inertias and capacitors. This situation
would result in a model with several aternative causal configurations, in
dependance of the values of the energy variables.

The presence of hysteresis (which is absolutely necessary in order to
have a smulable scheme) does not modify the concepts underlying the
previous considerations.

STABILITY PROPERTIES OF QUANTIZED BOND GRAPHS

When a simulation method is developed, it is important to guarantee
that the resulting simulation model conserves some properties of the
origina system like equilibrium points and stability.

The following theorems give sufficient conditions to assure that such
properties are conserved in QSS. Taking in account the fact that a QBG
under the assumptions done in Theorem 4 defines a QSS, these properties
deduced for a QSS will be conserved in a QBG satisfying the mentioned
hypothesis.

Theorem 6: Let a continuous system without inputs (15) and its associated
Quantized State System (16):

i-)'(l = :fl(le---an) (15)

}Xn =.fn(X1,...,Xn)

Il X1 = f1(aq,- Qp)
[ (16)
%o = fo(ape dp)



The point [X4,..., Xn] isan equilibrium point of (15) if and only if
the point [T ..., On] isan equilibrium point of (16), being

ﬁj = Yi j=1...,n.

The proof of this theorem is straightforward and it can be extended to
system with constant inputs under the condition that quantized versions of
theinputs are equal to the original inputs.

Theorem 6 imply that the quantized versions of the state variables in
the quantized system have the same possible values in the equilibrium as

the state variables of the origina system. However, it does not imply that
state variables in the quantized system will have such values.

Theorem 7: Consider a system as the one defined in (15) that has an
equilibrium point in the origin with the functions f, being continuous and

having bounded partial derivatives. Assume that it is also possible to find a
Lyapunov function, with its temporal derivative being negative defined and

continuous in an open region Z that includes the origin. Let Z* 1 Z bea
region limited by a level surface of function V. Then, given an arbitrary

open region Z; 1 Z* including the origin it is always possible to find a
quantization so that any trajectory of the resulting associated quantized
State system starting into an arbitrary closed region Z, (Z* E Z, E Z)
converges to the interior of Z;.

Proof: Let V/(X) be the mentioned Lyapunov function and V (X) its
temporal derivative. Since it is negative defined in Z, in the points
XIX1 Z3 =22 C Z1 (closed region that do not include the origin) it

exissanumber m>0/V(X)<-m" X1 Z3.

Let X; be an arbitrary point in Zs. Around this point the following function
is defined:

ax; (X) =gradV(X1)]" f(X1 - X) an
This is a continuous function since it is the scalar product of a constant
vector and a continuous function (f =[ f1,..., fn]T ). It isaso verified::
ax (0)=V(X1)<-m (18)
Then, it is defined the following function:
a(X) =suplax, (X) [ X11 Z3] (19
It can be easily seen that this function is continuous and verify:
a(0)<-m (20)
Thus, a positive number r, can be found satisfying:

a(xX)<o if |X|<r2 (21)
Then, any pair of points X1, X1 Z3 /||X1 - X" <ry verify:

gradl/(X1)]” X =ax, (X1- X)£a(X1- X)<0 (22)

Inequation (22) shows that the trajectory direction defined in point X is to
the interior of to the level surface of function V in the point X;. In a
quantized system as the defined in (16), the trajectory direction in the point

X that has an associated quantized value given by [Q,...,d,,] " can be
calculated as the trajectory direction of the continuous system in the point
X=[0y,..., 0] " - (Figure 10)

Being X an interna point to the quantization interval that contains X,
it is possible to choice the quantization interval so that the distance between
any point of the interval and the quantized point X issmaller thanr,. If itis
done, trajectory directions of the quantized system will be to the interior of
the level surfaces of V. Then, if al the quantization interval corresponding
to al the points of the region Z; satisfy the mentioned condition, the
convergence to the region Z; will be guaranteed, what completes the proof
of the theorem.

A way of achieve that condition over the distance between two points
of the same interval is defining:

Dq+e<r—2 (23)
n

being Dg the distance between consecutive quantization values of a state

variable, e the hysteresis window and n the continuous model order
(number of dimensions of the state space).
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Figure 10. Trajectories and level surfacesin the QSS.

Theorem 7 can be easily extended to systems with constant inputs and with
equilibrium points others than the origin. Theorems 6 and 7 show that the
method can be implemented achieving a result with an arbitrarily small
fina error. They also show the way of doing the quantization in final error
order to obtain afinal error bounded to some arbitrary value (given by the
choice of theregion Z;).

EXAMPLESAND RESULTS

The techniques here presented for discrete event simulation of
continuous bond graphs have been implemented in a version of the
software Power- DynaMo, which alows edition and simulation using
different forms of quantization.

Some simulations on a model of a Permanent Magnet DC Motor (Fig.
8) are presented. A start-up at no-load, followed by the injection of a
constant load at timet = 1 s is the simulated experiment. The physica
parameters of the motor are: Ra=0.1, La=10x 10°,b=1,J=1, U =10,
T = 10; with consistent units. The simulation parameters are uniform
quantization intervals of 10" 10 for the inductance, and of 0.1 for the
mechanical inertia.
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Figure 11. BG of a Permanent Magnet DC Motor




The simulation results are shown in Figs. 12, 13 and 14. The
comparison of Figs. 13 and 14 shows that the system is strongly stiff.
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Figure 12. Speed Trajectory

The number of internal transitions performed by the inductance and
inertia atomic DEV'S models was 203 and 102 , respectively. It means that
the total numbers of steps necessary in order to finish the simulation was
305. To obtain a similar precision using the method of Euler, more than
10,000 simulation steps are needed, while the Runge-K utta al gorithm needs
more than 8,000 steps. A variable-step algorithm like Runge-Kutta 4-5
(Press, et al., 1986) (Matlab's oded45) needs more than 6,000 steps.
Matlab’'s odel5s obtain similar results with only 70 steps, but it must be
considered that this is a fifth order implicit method, in comparison to the
simple, first order explicit DEV S-based simulation method.

The previous comparisons only take into account the number of steps,
but not the computational complexity at each step. In this regard, DEVS-
based methods generally outperform discrete-time methods, then at each
step the latter technique calculates the evolution of all the state variables of
the model, while the former one only computes the next value of the state
performing the transition and of the affected variables, which in high-order
systemsis of paramount importance.
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Figure 13. Armature Current Trajectory.

CONCLUSIONS

In this paper, a new class of Bond Graphs, Quantized Bond Graphs,
have been introduced. QBG are exactly representable by a discrete event
specification, which has been demonstrated in the article via the definition
of a generic hierarchica DEVS structure associated to any QBG. The
quantization of an ordinary, continuous-variable Bond Graph, and its
subsequent representation by the associated DEVS-structure, allow the

discrete event simulation of continuous physical systems represented by
Bond Graphs.
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Figure 14. Zoom of the first 500ns of the current evolution.

Some convergence properties have been pointed-out, and important
advantages of this discrete event based representation and simulation
technique vis-&-vis time discretization based techniques have been shown.
Particularly interesting among them are: the conversion of the usualy
involved differentia causality problems in continuous models into a
simpler switching problem in QBG, and the reduced number of calculation
stepsinvolved in simulation.
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