
A LINEAR INTEGER PROGRAMMING APPROACH FOR THE

EQUITABLE COLORING PROBLEM∗

Isabel Méndez Dı́az[, Graciela Nasini† and Daniel Severı́n†

[Fac. de Ciencias Exactas y Naturales, UBA, Argentina (imendez@dc.uba.ar)
†Fac. de Ciencias Exactas, Ingenierı́a y Agrim., UNR, Argentina ({nasini, daniel}@fceia.unr.edu.ar)

Abstract: Branch & Cut algorithms based on the polyhedral study of linear integer programming models have proved
to be an important tool for solving coloring problems. The Equitable Coloring Problem is a coloring problem where
color class sizes must differ by at most one. In this work, we propose and evaluate integer programming formulations
for the Equitable Coloring Problem. The best formulation is then used in the context of a Branch & Cut algorithm
which achieves a competitive perfomance.

Keywords: equitable graph coloring, integer programming, branch and cut

2000 AMS Subject Classification: 90C27 - 05C15

1 INTRODUCTION AND PREVIOUS WORKS

Given a graph G, the Equitable Coloring Problem (ECP) consists of finding the minimum number of
colors needed in order to have a coloring of G such that any pair of color classes differ in size by at most
one. Several applications such as parallel memory systems [1] and load balancing in task scheduling [3] can
be modeled as an ECP (for more details, see for example [4]).

Let G = (V,E) be a simple graph, where V = {1, . . . , n} and E are the sets of vertices and edges
of G respectively. Given a k-coloring of G, we denote by Cj the set of vertices painted with color j, for
each j = 1, . . . , n. An equitable k-coloring of G (or just k-eqcol) is a k-coloring of G that satisfies the
equity constraints: ||Ci| − |Cj || ≤ 1, for i, j = 1, . . . , k. Alternatively, a k-coloring is a k-eqcol if and only
if bn/kc ≤ |Cj | ≤ dn/ke for each j = 1, . . . , k. The equitable chromatic number of G, χeq(G), is the
minimum k for which there exists a k-eqcol in G. Finding this number is an NP-Hard problem [5].

Exact algorithms based on the polyhedral study of linear integer programming (IP) models have proved
to be an important tool for solving the traditional coloring problem (CP) [2, 6, 8]. Clearly, IP models for CP
can be adapted for ECP by modeling the equity constraints as linear inequalities in terms of variables used
in the IP model. In these cases, valid inequalities for CP become valid also for ECP and the cutting-plane
stage of a Branch & Cut (B&C) algorithm that solves the CP can be reused in a B&C algorithm for solving
ECP. This is the idea behind the B&C algorithm presented in [9], where ECP is modeled by adding equity
constraints to the CP-model presented in [2]. We refer to that algorithm as B&C-LF2.

In this work, we consider the CP-model presented in [8], which has shown a good performance in the
context of a B&C algorithm. We propose three different ways of expressing equity constraints and we choose
the one with best behavior according to our computational experiences. We develop a B&C algorithm that
uses valid inequalities proposed in [8] for the cutting-plane stage, and we compare our algorithm against
B&C-LF2, concluding that our algorithm presents a better performance.

2 MODELS FOR THE ECP

In the CP-model given in [8], colorings are represented by using binary variables xvj and wj for each
vertex v ∈ V and color 1 ≤ j ≤ n as follows: xvj = 1 if and only if color j is assigned to vertex v and

∗This research was partially supported by PICT 38036 ANPCyT.

wj = 1 if and only if color j is used by some vertex. The formulation is:

min
n∑

j=1

wj

s.t.
n∑

j=1

xvj = 1, ∀ v ∈ V, (1)

xuj + xvj ≤ wj , ∀ uv ∈ E, j = 1, . . . , n, (2)

wj+1 ≤ wj , ∀ j = 1, . . . , n− 1, (3)

xvj , wj ∈ {0, 1}, ∀ v ∈ V, j = 1, . . . , n,

where constraints (1) assert that each vertex has to be painted by an unique color, constraints (2) guarantee
that two adjacent vertices can not share the same color, and constraints (3) remove some symmetric solutions
by forbidding to use color j + 1 if color j is not used.

Unlike the CP, we have to consider isolated vertices of G in the ECP [7]. This fact forces us to add the
constraints

xij ≤ wj , ∀ i ∈ I, j = 1, . . . , n, (4)

where I ⊂ V is the set of isolated vertices of G, imposing that, if color j is not used, no isolated vertex can
be painted with color j.

In [7], we presented a model that avoids a class of symmetric colorings, imposing that |Cj | ≥ |Cj+1| for
j = 1, . . . , n− 1. In a such k-eqcol, if tjk denotes the size of color class j and p = n mod k, we have that
tjk = bn/kc+ 1 if j ≤ p, and tjk = bn/kc if p < j ≤ k. By using this property and the fact that a solution
is a k-eqcol if and only if wk − wk+1 = 1, equity constraints are modeled as:

n∑
v=1

xvj = wn +
n−1∑
k=j

tjk(wk − wk+1), ∀ j = 1, . . . , n− 1. (5)

Moreover, with the addition of (5) some constraints can be deleted: (2) and (4) for j = bn/2c + 1, . . . , n
become redundant. We refer to the formulation comprised of (1), (3), (2) and (4) for j = 1, . . . , bn/2c, and
(5) as M1.

In the following two models, we eliminate some symmetric colorings by imposing that a vertex v should
be painted by a color j such that j ≤ v. For attaining this elimination, we only need to fix

xvj = 0, ∀ j = v + 1, . . . , n. (6)

However, (6) can be incompatible with constraints (5). Then, in order to use (6), we must remodel the equity
constraints. We first propose to express the restriction bn/kc ≤ |Cj | ≤ dn/ke, for each j = 1, . . . , k, by
the following constraints:

∑
v∈V

xvj ≥ wn +
n−1∑
k=j

⌊
n

k

⌋(
wk − wk+1

)
, ∀ j = 1, . . . , n− 1, (7)

∑
v∈V

xvj ≤ wn +
n−1∑
k=j

⌈
n

k

⌉(
wk − wk+1

)
, ∀ j = 1, . . . , n− 1. (8)

We refer to the formulation comprised of (1), (2), (3), (4), (6), (7) and (8) as M2.

The second way is to strengthen the constraint bn/kc ≤ |Cj | ≤ dn/ke by the disjunction |Cj | = bn/kc
∨ |Cj | = dn/ke. We add binary variables yj for j = 1, . . . , n− 1 and the constraints

∑
v∈V

xvj = yj + wn +
n−1∑
k=j

⌊
n

k

⌋(
wk − wk+1

)
, ∀ j = 1, . . . , n− 1. (9)

The formulation that uses (1), (2), (3), (4), (6) and (9) is referred asM3. Let us notice that we can not delete
(2) and (4) for j = bn/2c+ 1, . . . , n in M2 and M3, as we did with M1.

We compared the performance of the three formulations by using a Cut & Branch algorithm based on the
standard Branch & Bound algorithm of CPLEX 10.1 plus a custom cutting-plane algorithm that generates
strong cuts in the root node, in orden to speed up the optimization. The cuts added in the root node are
called clique inequalities and are separated by a greedy heuristic (more details of its implementation can be
found in [8]).
The test consisted of comparing the behavior of M1, M2 and M3 on 252 randomly generated graphs, and
was performed on a Sun UltraSparc workstation. The following table summarizes the results. The first two
columns display the number of vertices and the graph density: low means 0-33%, medium means 33-66%
and high means 66-100%. Columns 3-5 give the percentages of succesfully solved instances (s.s.i.) for each
formulation. An instance is not solved whether the optimizer exceeds the time limit (2 hours). Columns
6-8 give the evaluated nodes in the format “a (b)”, where a is the average of the evaluated nodes over
instances solved by all formulations and b is the average of the evaluated nodes over instances solved by
each formulation. Columns 9-11 give the averages of the elapsed time with the same format as columns 6-8.

n Dens. % of s.s.i. Evaluated nodes Time in sec.
M1 M2 M3 M1 M2 M3 M1 M2 M3

low 100 100 100 3(3) 2(2) 2(2) 0(0) 0(0) 0(0)
25 med. 100 100 100 55(55) 15(15) 16(16) 3(3) 0(0) 0(0)

high 100 100 100 1293(1293) 125(125) 23(23) 27(27) 1(1) 0(0)
low 100 100 100 11(11) 20(20) 39(39) 1(1) 0(0) 1(1)

30 med. 100 100 100 3175(3175) 1184(1184) 1323(1323) 317(317) 51(51) 58(58)
high 84 100 100 3603(3603) 338(347) 244(302) 577(577) 14(17) 11(15)
low 100 100 100 182(182) 12(12) 8(8) 6(6) 1(1) 1(1)

35 med. 81 100 100 4381(4381) 1633(2360) 802(1755) 696(696) 104(181) 57(164)
high 67 90 90 2109(2109) 3994(5713) 1298(3116) 895(895) 603(745) 131(409)

As it can be appreciated from the table, M3 outperformsM1 andM2, both in nodes and time. In particular,
the CPU time difference increases with graph size. This behavior shows that M3 has a good potential for
developing a competitive B&C algorithm for the ECP, based on this formulation.

3 A BRANCH AND CUT ALGORITHM FOR ECP
From the results given above, we decided to implement a B&C for the ECP based on M3. We im-

plemented several routines related to the development of a B&C algorithm, such as initial heuristics and
cutting-plane algorithms. Details of these routines are not given due to lack of space.

In this section, we compare the performance between B&C-LF2 and our algorithm (called B&C-M3).
We use the same instances as [9] in order to make the comparison fair. The instances were taken from the
DIMACS database, except the kneser instances corresponding to the well known Kneser family of graphs.
B&C-M3 were executed on an Intel 1.6Ghz using CPLEX 11 as the LP-solver, while B&C-LF2 were
executed on an AMD-Athlon 1.8Ghz using XPRESS 2005.
The following table resumes the results. The first three columns display the name of the instance, the
number of vertices and the equitable chromatic number, respectively. Columns 4-6 give the evaluated nodes
and columns 7-9 give the time elapsed. An asterisk indicates that the current instance was solved by the
initial heuristics.

Name n χeq Evaluated nodes Time in sec.
B&C-M3 B&C-LF2 B&C-M3 B&C-LF2

miles750 128 31 0 6 1 171
miles1000 128 42 0∗ 13 0∗ 267
miles1500 128 73 0∗ 1 0∗ 13
zeroin.i.1 211 49 0 1 0 50
zeroin.i.2 211 36 7 23 6 510
zeroin.i.3 206 36 7 28 7 491
queen6-6 36 7 205 1 13 1
queen7-7 49 7 2 1 4 0
queen8-8 64 9 2332 27 1327 441
myciel3 11 4 0 7 0 0
myciel4 23 5 179 237 0 5

jean 80 10 0∗ 1 0∗ 4
anna 138 11 0∗ 2 0∗ 26
david 87 30 0 1 0 13

games120 120 9 0∗ 1 0∗ 30
kneser5-2 10 3 0∗ 1 0∗ 0
kneser7-2 21 6 628 357 1 6
kneser7-3 35 3 4 4 0 2
kneser9-4 126 3 0 4 0 809

1-FullIns-3 30 4 0 34 0 2
2-FullIns-3 52 5 0 84 0 25
3-FullIns-3 80 6 0 38 0 85
4-FullIns-3 114 7 0 3 1 72
5-FullIns-3 154 8 0 5 1 268

We conclude that B&C-M3 evaluates fewer nodes than B&C-LF2, and seems to consume less time. The
only exception is the subset of queen graphs, where B&C-LF2 shows a better behavior.

Clearly, our algorithm should be improved when we incorporate strong valid inequalities specific to the
ECP (and not to the CP) to the cutting-plane stage. The next step in our research is to perform a polyhedral
study of M3 in order to find families of valid inequalities for the ECP, and make separation routines for
them. Finally, we also will incorporate other elements (such as primal heuristics and variable branching
selection) that enrich the algorithm.

REFERENCES

[1] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Scheduling Computer and Manufacturing Processes. Springer
Verlag, 1997.

[2] Manoel Campêlo, Ricardo Corrêa, and Victor Campos. On the asymmetric representatives formulation for the vertex coloring
problem. Discrete Applied Mathematics, 156(7):1097–1111, 2008.

[3] Sajal K. Das, Irene Finocchi, and Rossella Petreschi. Conflict-free star-access in parallel memory systems. J. Parallel Distrib.
Comput., 66(11):1431–1441, 2006.

[4] Marek Kubale et al. Graph Colorings. American Mathematical Society, Providence, Rhode Island, 2004.
[5] Hannah Furmańczyk and Marek Kubale. The complexity of equitable vertex coloring of graphs. Journal of Applied Computer

Science, 13:97–107, 2005.
[6] A. Mehrotra and M. Trick. A column generation approach for graph coloring. INFORMS J. Comput., 8:344–353, 1996.
[7] Isabel Méndez-Dı́az, Graciela Nasini, and Daniel Severı́n. A polyhedral approach for the graph equitable coloring problem.

VI ALIO/EURO Workshop on Applied Combinatorial Optimization, 2008.
[8] Isabel Méndez-Dı́az and Paula Zabala. A cutting plane algorithm for graph coloring. Discrete Applied Mathematics,

156(2):159–179, 2008.
[9] L. Bahiense and Y. Frota and N. Maculan and T. Noronha and C. Ribeiro. A Branch-and-cut for equitable coloring. Interna-

tional Network Optimization Conference, 2009.

