
An exact DSatur-based algorithm for the
Equitable Coloring Problem

Isabel Méndez-Dı́az a,1 Graciela Nasini b,1 Daniel Seveŕın b,1

a FCEyN, Universidad de Buenos Aires, Argentina, imendez@dc.uba.ar
b FCEIA, Universidad Nacional de Rosario y CONICET Argentina,

{nasini, daniel}@fceia.unr.edu.ar

Abstract

This paper describes an exact algorithm for the Equitable Coloring Problem, based
on the well known DSatur algorithm for the classic Coloring Problem with new
pruning rules specifically derived from the equity constraint. Computational expe-
riences show that our algorithm is competitive with those known in literature.

Keywords: equitable coloring, DSatur, exact algorithm

1 Introduction

The Graph Coloring Problem (GCP) is a well known NP -Hard problem which
has received many attention from the scientific community because of its large
range of real applications and computational difficulty. Given a simple graph
G = (V,E) a k-coloring is a partition of V into k non-empty stable sets called
color classes, denoted by C1, . . . , Ck, such that vertices in Ci are colored with
color i for i ∈ {1, . . . , k}. GCP consists of finding the chromatic number of
G, denoted by χ(G), which is the minimum number k of colors such that G
admits a k-coloring.

1 Partially supported by grants PIP-CONICET 241, PICT 2011-0817 and UBACYT
20020100100666.

There are many practical situations that can be modeled as a GCP with
some additional restrictions. For instance, in scheduling problems, it would be
desirable to assign a balanced workload among employees to avoid unfairness,
or to assign balanced task load to prevent further wear on some machines
more than others. The addition of this extra equity constraint gives rise to
the Equitable Coloring Problem (ECP).

Formally, an equitable k-coloring (or just k-eqcol) of G is a k-coloring
satisfying the equity constraint, i.e. ||Ci| − |Cj|| ≤ 1, for i, j ∈ {1, . . . , k} or,
equivalently, bn/kc ≤ |Cj| ≤ dn/ke for each j ∈ {1, . . . , k}, where n = |V |.
The equitable chromatic number of G, χeq(G), is the minimum k for which
G admits a k-eqcol. The ECP consists of finding χeq(G) and it is also an
NP -hard problem [4].

One of the most well known exact algorithms for GCP is Branch-and-
Bound DSatur, proposed by Brélaz in [2] and later improved by Sewell in
[8]. This algorithm is still used by its simplicity, its efficiency in medium-sized
graphs and the possibility of applying it at some stage in metaheuristics or in
more complex exact algorithms like Branch-and-Cut. Recently, it was shown
that a modification of DSatur performs relatively well compared with many
state-of-the-art Branch-and-Cut algorithms, showing superiority in random
instances [7]. This fact makes nowadays research on DSatur-based solvers still
important.

The goal of this work is to present a DSatur-based solver for the ECP. In
the next sections, we review DSatur algorithm and we propose new pruning
rules specifically derived from the equity constraint. Finally, we report our
computational experience.

1.1 Notations and the DSatur algorithm

DSatur is an implicit enumeration algorithm where each node of the tree
corresponds to a partial coloration of the graph.

A partial k-coloring of G, Π = (k, C1, . . . , Cn, U, F), is defined by a positive
integer k, a family of disjoint stable sets C1, . . . , Cn of G such that Cj 6= ∅
if and only if j ≤ k, a set of uncolored vertices U = V \(∪kj=1Cj) and a list
F of their feasible color sets, i.e. for every u ∈ U , F (u) = {j ∈ {1, . . . , n} :
no vertex of Cj is adjacent to u}. Clearly, a partial k-coloring with U = ∅ is
a k-coloring.

Given Π = (k, C1, . . . , Cn, U, F), u ∈ U and j ∈ {1, . . . , k + 1}, we denote
by 〈u, j〉 ↪→ Π to the partial coloring of G obtained by adding node u to Cj,
i.e. if 〈u, j〉 ↪→ Π = (k′, C ′1, . . . , C

′
n, U

′, F ′) then k′ = max{j, k}, C ′j = Cj∪{u},
C ′r = Cr for all r 6= j, U ′ = U\{u}, F ′(v) = F (v)∩{j} for each v ∈ U ′ adjacent

to u, and F ′(v) = F (v) otherwise.

Given a maximal clique Q = {v1, v2, . . ., vq} of G, we denote by ΠQ the
partial q-coloring defined by Ci = {vi} for all 1 ≤ i ≤ q and U = V \Q.

DSatur is based on a generic enumerative scheme proposed by Brown [3],
outlined as follows:

Initialization: G a graph, c an UB-coloring of G and Q a maximal clique of G.

Node(Π = (k,C1, . . . , Cn, U, F)): (UB and c are global variables)

Step 1. If U = ∅, set UB ← k, c← Π and return.

Step 2. Select a vertex u ∈ U .

Step 3. For each color 1 ≤ j ≤ max{k + 1, UB − 1} such that j ∈ F (u), do:

Π′ ←
(
〈u, j〉 ↪→ Π

)
If F ′(v) 6= ∅ for all v ∈ U ′, execute Node(Π′).

It is not hard to see that the recursive execution of Node(ΠQ) finally gives
the value of χ(G) into the variable UB and an optimal coloring into c [2].

Based on this scheme, different algorithms for solving GCP have been
evaluated by proposing different vertex selection strategies in Step 2. Two of
them are due to Brélaz (DSatur algorithm [2]) and Sewell (Celim algorithm
[8]). Recently, San Segundo proposed an improvement to Sewell rule (Pass
algorithm [7]), which gave rise to a competitive solver with respect to many
of the recent exact algorithms in the literature.

2 EqDSatur: An exact algorithm for the ECP

Let us notice that a trivial DSatur-based algorithm for the ECP can be ob-
tained from the previous Brown’s scheme, by changing the UB-coloring in
the initialization by an UB-eqcol and adding the condition “Π is an equitable
coloring” in Step 1. However, using explicitly the equity property during gen-
eration of nodes we can avoid to explore tree regions that will not lead to an
equitable coloring and therefore would be needlessly enumerated.

In the following lemma, we present necessary conditions for a partial col-
oring to be extended to an equitable coloring.

Lemma 2.1 Let G be a graph of n vertices and let UB and LB be, respec-
tively, an upper and a lower bound of χeq(G). Let Π be a partial k-coloring
of G such that k < UB and M = max{|Cr| : 1 ≤ r ≤ k}. Then, if Π can be
extended to an r-eqcol of G with k ≤ r < UB, the following properties hold:

(P.1) |U | ≥
∑k

r=1(max{M−1,
⌊

n
UB−1

⌋
}−|Cr|)+ (P.2) M ≤

⌈
n

max{k,LB}

⌉
In addition, property P.1 in the previous lemma also gives us a sufficient

condition for a partial coloring with U = ∅ to be an equitable coloring:

Lemma 2.2 If Π is a partial k-coloring satisfying property P.1 and U = ∅
then Π is a k-eqcol.

Our DSatur-based algorithm introduces the previous properties as modi-
fications (written in boldface) into the Brown’s scheme, in the following way:

Initialization: G a graph, c an UB-eqcol of G, LB a lower bound of χeq(G) and Q a

maximal clique of G.

Node(Π = (k,C1, . . . , Cn, U, F)): (UB and c are global variables)

Step 1. If U = ∅, set UB ← k, c← Π and return.

Step 2. Select a vertex u ∈ U .

Step 3. For each color 1 ≤ j ≤ max{k + 1, UB − 1} such that j ∈ F (u), do:

Π′ ←
(
〈u, j〉 ↪→ Π

)
If F ′(v) 6= ∅ for all v ∈ U ′ and Π′ satisfies P.1 and P.2, execute Node(Π′).

We have the following:

Theorem 2.3 The recursive execution of Node(ΠQ) gives the value of χeq(G)
into the variable UB and an optimal equitable coloring into c.

Proofs of the previous results are omitted due to lack of space.

In order to initialize our algorithm we use the heuristic Naive given in [4]
for obtaining an initial UB-eqcol of G. The lower bound LB is computed as
in [6], i.e. as the maximum between the size of the maximal clique computed
greedily and a relaxation of a bound given in [5].

Regarding the mentioned vertex selection strategies, we carried out bench-
mark tests over random instances and we concluded that Pass [7] is the best
choice. We call EqDSatur to our implementation using this strategy.

Another factor we take into account is in which order the nodes are evalu-
ated in Step 3. All mentioned DSatur implementations for GCP evaluate first
color j = 1, then color j = 2, and so on. We call EqDS1 to EqDSatur with
this criterion. In addition, we consider another strategy based on sorting color
classes according to their size in ascending order: if |Ci1| ≤ |Ci2 | ≤ . . . ≤ |Cik |,
we evaluate first j = i1, then j = i2, and so on. We call EqDS2 to EqDSatur
with this strategy.

3 Computational experience

Computational tests were carried out on an Intel i5 2.67Ghz over Linux O.S.
Some details and tables were omitted due to lack of space. Instead, a summary
of the most essential details are provided.

Our first experiment compares EqDS1 against the “trivial” DSatur-based
exact algorithm for the ECP mentioned at Section 2, in order to evaluate

whether the time needed to check properties P.1 and P.2 compensate for the
time wasted in exploring nodes of the enumeration tree where these properties
do not hold. We noticed that EqDS1 really outperforms the trivial implemen-
tation. For instance, in medium-density random graphs of 70 vertices, EqDS1

is in average 25 times faster than the trivial implementation and is able to
solve 21% more instances within 2 hours of execution.

The second experiment compares EqDS1 and EqDS2 against “integer lin-
ear programming-based” solvers for ECP, a classical approach for developing
exact algorithms. We consider the recent Branch-and-Cut proposed in [1]
(B&C-LF2) for which the authors report results on random instances up to 70
vertices in a 1.8 Ghz AMD-Athlon platform. For random instances with 80
vertices, we compare EqDSatur against CPLEX 12.1 solving the formulation
for ECP given in [6] with the same initial bounds.

The following table reports the percentage of solved instances, average of
relative gap and time elapsed for 100 random instances (10 per row, except
results from [1]). An instance is considered not solved after the limit of two
hours of execution. A bar “−” means no instance was solved. Each instance
of d% of density is generated by considering a uniform probability d that two
vertices are adjacent to each other.

%Density % solved inst. % Rel. Gap. Time

Vertices Graph LF2 EqDS1 EqDS2 LF2 EqDS1 EqDS2 LF2 EqDS1 EqDS2

70 10 100 100 100 0 0 0 109 0 0

70 30 0 100 100 18 0 0 − 0 0

70 50 0 100 100 8,2 0 0 − 16,2 16,1

70 70 100 100 100 0 0 0 273 31,2 32,1

70 90 100 100 100 0 0 0 11 0 0

CPLEX EqDS1 EqDS2 CPLEX EqDS1 EqDS2 CPLEX EqDS1 EqDS2

80 10 100 100 100 0 0 0 5,7 0 0

80 30 0 100 100 20 0 0 − 23,7 17,6

80 50 0 100 100 24 0 0 − 477 424

80 70 10 70 70 16 10 10 5769 1715 1653

80 90 100 100 100 0 0 0 690 12,5 12,3

Our algorithm is able to solve more instances than CPLEX and, without
considering the difference of platforms, B&C-LF2. Also, EqDS2 seems to be
a little better than EqDS1 in terms of time.

The last experiment compares EqDS1 and EqDS2 against CPLEX and
B&C-LF2 on 24 benchmark instances reported in [1]. 16 instances have been
solved by CPLEX, EqDS1 and EqDS2 in less than two seconds. B&C-LF2

solved these 16 instances with an average of 62 seconds and never outperforms
the other three algorithms. Instance queen8 8 have been solved by CPLEX
in 654 sec., by B&C-LF2 in 441 sec., by EqDS1 in 7.5 sec. and by EqDS2 in

1.1 sec. Instances miles1000 and miles750 have not been solved by EqDS1,
but have been solved by B&C-LF2 in 267 and 171 sec. respectively, and by
CPLEX and EqDS2 in less than a second.

On the other hand, neither EqDS1 nor EqDS2 could solve 5 instances.
In particular, 3 of these instances (3-FullIns 3, 4-FullIns 3, 5-FullIns 3)
are hard to solve by enumerative schemes, as reported in [7], so in our opinion,
EqDSatur presents the expected behaviour.

We want to remark that EqDSatur has also been able to solve DIMACS
benchmark instances which are not mentioned in [1]. For instance, queen9 9

has been solved by EqDS1 and EqDS2 in less than 10 minutes. In contrast,
CPLEX could not solve it in the term of 4 hours of execution. Another
example is myciel5 which has been solved in less than a sec. by EqDS1 and
EqDS2 but CPLEX needed 149 sec. to solve it.

From these results, we conclude that EqDS2 is highly competitive with
respect to the algorithms available in the literature for the ECP.

References

[1] Bahiense L., Y. Frota, T. F. Noronha and C. Ribeiro. A branch-and-
cut algorithm for the equitable coloring problem using a formulation by
representatives, Discrete Appl. Math., In Press.

[2] Brélaz, D. New methods to color the vertices of a graph, Comm. of the ACM
22 (1979) 251–256.

[3] Brown, J. R. Chromatic scheduling and the chromatic number problem, Manag.
Sci. (Part I) 19 (1972) 456–463.

[4] Furmańczyk H. and M. Kubale. The complexity of equitable vertex coloring of
graphs, J. Appl. Comp. Sci. 13 (2005) 95–107.

[5] Lih K-W and B-L Chen. Equitable coloring of trees, J. Combin. Theory, Series
B 61 (1994), 83–87.

[6] Méndez-Dı́az I., G. Nasini and D. Severin. A polyhedral approach for the
Equitable Coloring Problem. Discrete Appl. Math., In Press.

[7] San Segundo, P. A new DSATUR-based algorithm for exact vertex coloring,
Comput. Oper. Res. 39 (2012) 1724–1733.

[8] Sewell, E. C. An improved algorithm for exact graph coloring, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, AMS, Providence,
Rhode Island 26 (1996), 359–373.

	Introduction
	Notations and the DSatur algorithm

	EqDSatur: An exact algorithm for the ECP
	Computational experience
	References

