Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Polyhedral results for the Equitable Coloring Problem

Isabel Méndez-Díaz² Graciela Nasini^{1,3} Daniel Severin^{1,3}

¹ FCEIA, UNR, {nasini, daniel}@fceia.unr.edu.ar

² FCEyN, UBA, imendez@dc.uba.ar

³ CONICET, Argentina

LAGOS, Bariloche, 2011

Definitions

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Classic coloring

Let G = (V, E). A k-coloring is a partition of V in C_1, C_2, \ldots, C_k such that:

•
$$uv \in E$$
, $u \in C_j \implies v \notin C_j$

equitable coloring

A k-eqcol is a k-coloring such that: • $||C_i| - |C_j|| \le 1$ $\forall i, j = 1, ...,$

Equitable chromatic number

 $\chi_{eq}(G) = \min\{k : G \text{ admits a } k\text{-eqcol}\}$

• ECP consists in finding $\chi_{eq}(G)$.

Definitions

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computational results

Classic coloring

Let G = (V, E). A k-coloring is a partition of V in C_1, C_2, \ldots, C_k such that:

•
$$uv \in E$$
, $u \in C_j \implies v \notin C_j$

Equitable coloring

A k-eqcol is a k-coloring such that: • $||C_i| - |C_i|| \le 1$ $\forall i, j = 1, ..., k$

Equitable chromatic number

 $\chi_{eq}(G) = \min\{k : G \text{ admits a } k\text{-eqcol}\}$

• ECP consists in finding $\chi_{eq}(G)$.

Definitions

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computational results

Classic coloring

Let G = (V, E). A k-coloring is a partition of V in C_1, C_2, \ldots, C_k such that:

•
$$uv \in E$$
, $u \in C_j \implies v \notin C_j$

Equitable coloring

A k-eqcol is a k-coloring such that:

• $||C_i| - |C_j|| \le 1$ $\forall i, j = 1, ..., k$

Equitable chromatic number

 $\chi_{eq}(G) = \min\{k : G \text{ admits a } k \text{-eqcol}\}$

• ECP consists in finding $\chi_{eq}(G)$.

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• Definition and first results [Meyer (1973)]

- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Definition and first results [Meyer (1973)]
- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)]
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Definition and first results [Meyer (1973)]
- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)]
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Definition and first results [Meyer (1973)]
- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)]
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Definition and first results [Meyer (1973)]
- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)]
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Definition and first results [Meyer (1973)]
- Applications:
 - Municipal garbage collection service [Tucker 1973]
 - Traffic signal control [Irani, Leung (1996)]
 - Parallel memory systems [Das, Finocchi, Petreschi (2006)]
- ECP is NP-Hard [Kubale, Furmanczyk (2005)]
- IP model and C&B [Méndez-Díaz, Nasini, S.- (Alio/Euro 2008)]
- B&C-LF₂ based on asymmetric representatives model [Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]
- Tabu search and B&C based on clique inequalities [Méndez-Díaz, Nasini, S.- (INFORMS 2010)]

In this work ...

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

- Polyhedral study of the IP formulation used by our B&C
 - 5 families of valid inequalities

• Computational results

Comparison between B&C
 with clique inequalities
 with all inequalities

In this work ...

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- Polyhedral study of the IP formulation used by our B&C
 - 5 families of valid inequalities
- Computational results
 - Comparison between B&C
 - with clique inequalities
 - with all inequalities

Polyhedral results for the ECP

Méndez-Díaz Nasini, Severin х

Introduction

Polyhedral study of the formulation

Computationa results

$$x_{vj} = \begin{cases} 1 & \text{color } j \text{ is assigned to } v, \\ 0 & \text{otherwise,} \end{cases}$$
 $w_j = \begin{cases} 1 & x_{vj} = 1 \text{ for some } v, \\ 0 & \text{otherwise.} \end{cases}$

$$\begin{split} \min \sum_{j=1}^{n} w_j \\ s.t. \sum_{j=1}^{n} x_{vj} = 1, \\ x_{uj} + x_{vj} \leq w_j, \\ x_{vj} \leq w_j, \end{split}$$

 $\forall v \in V$ $= E, \ i = 1, \dots, n$

$$\forall v \text{ isolated}, j = 1, \dots, n$$

 $\forall j = 1, \dots, n-1$

Coloring polytope

 $\mathcal{CP} = \text{ convex hull of colorings of } G$

Polyhedral results for the ECP

Méndez-Díaz Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

$$x_{vj} = \begin{cases} 1 & \text{color } j \text{ is assigned to } v, \\ 0 & \text{otherwise,} \end{cases} \quad w_j = \begin{cases} 1 & x_{vj} = 1 \text{ for some } v, \\ 0 & \text{otherwise.} \end{cases}$$

$$s.t. \sum_{j=1}^{n} x_{vj} = 1, \qquad \forall v \in V$$
$$x_{uj} + x_{vj} \le w_j, \qquad \forall uv \in E, \ j = 1, \dots, m$$

$$\forall uv \in E, j = 1, \dots, n$$

$$\forall v \text{ isolated}, j = 1, \dots, n$$

$$\forall j = 1, \dots, n-1$$

Coloring polytope

 $x_{vj} \leq w_j$

 $\min \sum_{j=1} w_j$

 $\mathcal{CP} = \text{ convex hull of colorings of } G$

Polyhedral results for the ECP

Méndez-Díaz Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

$$x_{vj} = \begin{cases} 1 & \text{color } j \text{ is assigned to } v, \\ 0 & \text{otherwise,} \end{cases} \quad w_j = \begin{cases} 1 & x_{vj} = 1 \text{ for some } v, \\ 0 & \text{otherwise.} \end{cases}$$

 $s.t. \sum_{j=1}^{n} x_{vj} = 1, \qquad \forall v \in V$ $x_{uj} + x_{vj} \le w_j, \qquad \forall uv \in E, \ j = 1, \dots, n$

$$\forall uv \in E, j = 1, \dots, n$$

$$\forall v \text{ isolated}, j = 1, \dots, n$$

$$\forall j = 1, \dots, n-1$$

Coloring polytope

 $\begin{aligned} x_{vj} &\leq w_j, \\ w_{j+1} &\leq w_j, \end{aligned}$

 $\min \sum_{j=1} w_j$

 $\mathcal{CP} =$ convex hull of colorings of G

Polyhedral results for the ECP

Méndez-Díaz Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

$$x_{vj} = \begin{cases} 1 & \text{color } j \text{ is assigned to } v, \\ 0 & \text{otherwise,} \end{cases} \quad w_j = \begin{cases} 1 & x_{vj} = 1 \text{ for some } v, \\ 0 & \text{otherwise.} \end{cases}$$

$$s.t.\sum_{j=1}^n x_{vj} = 1, \qquad \qquad \forall \ v \in V$$

$$\forall uv \in E, j = 1, \dots, n$$

$$\forall v \text{ isolated}, j = 1, \dots, n$$

$$\forall j = 1, \dots, n-1$$

Coloring polytope

 $\begin{aligned} x_{uj} + x_{vj} &\leq w_j, \\ x_{vj} &\leq w_j, \\ w_{j+1} &\leq w_j, \end{aligned}$

 $\min \sum_{j=1} w_j$

 $\mathcal{CP} = \text{ convex hull of colorings of } G$

IP model for ECP [Méndez-Díaz, Nasini, S.- (2009)]

 $x_{vj} = \begin{cases} 1 & \text{color } j \text{ is assigned to } v, \\ 0 & \text{otherwise,} \end{cases}$ $w_j = \begin{cases} 1 & x_{vj} = 1 \text{ for some } v, \\ 0 & \text{otherwise.} \end{cases}$ $\min \sum w_j$ $s.t.\sum_{i=1}^{n} x_{vj} = 1,$ $\forall v \in V$ $x_{ui} + x_{vi} \leq w_i$ $\forall uv \in E, i = 1, \ldots, n$ $x_{vi} < w_i$ $\forall v \text{ isolated}, j = 1, \dots, n$ $w_{i+1} \leq w_i$ $\forall i = 1, \ldots, n-1$ $\sum_{i=1}^{n} x_{vj} \geq w_n + \sum_{i=1}^{n-1} \left\lfloor \frac{n}{k} \right\rfloor (w_k - w_{k+1}),$ $\forall i = 1, \ldots, n-1$ $\sum_{n \in \mathcal{W}} x_{vj} \leq w_n + \sum_{k=1}^{n-1} \left\lceil \frac{n}{k} \right\rceil (w_k - w_{k+1}),$ $\forall j = 1, \ldots, n-1$

Dimension

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Equitable coloring polytope

 $\mathcal{ECP} = \text{ convex hull of equitable colorings of } G$

 $\mathscr{U}(G) = \{k : G \text{ does not admit any } k \text{-eqcol}\}$

• Example: $K_{3,3}$ only admits 2,4,5 and 6-eqcols $\longrightarrow \mathscr{A}(K_{3,3}) = \{1,3\}$

Dimension of \mathcal{ECP}

 $dim(\mathcal{ECP}) = n^2 - (|\mathscr{A}(G)| + 2)$

• Example: $dim(K_{3,3}) = 32$

Dimension

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Equitable coloring polytope

 $\mathcal{ECP} = \text{ convex hull of equitable colorings of } G$

 $\mathscr{A}(G) = \{k : G \text{ does not admit any } k\text{-eqcol}\}$

• Example: $K_{3,3}$ only admits 2,4,5 and 6-eqcols $\longrightarrow \mathscr{A}(K_{3,3}) = \{1,3\}$

Dimension of \mathcal{ECP}

 $dim(\mathcal{ECP}) = n^2 - (|\mathscr{A}(G)| + 2)$

• Example: $dim(K_{3,3}) = 32$

Dimension

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Equitable coloring polytope

 $\mathcal{ECP} = \text{ convex hull of equitable colorings of } G$

 $\mathscr{A}(G) = \{k : G \text{ does not admit any } k\text{-eqcol}\}$

• Example: $K_{3,3}$ only admits 2,4,5 and 6-eqcols $\longrightarrow \mathscr{A}(K_{3,3}) = \{1,3\}$

Dimension of \mathcal{ECP}

 $dim(\mathcal{ECP}) = n^2 - (|\mathscr{A}(G)| + 2)$

• Example: $dim(K_{3,3}) = 32$

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Clique inequalities

Let $j \le n-1$ and Q be maximal clique of G such that $|Q| \ge 2$. Then, the clique inequality

$$\sum_{\mathbf{v}\in Q} x_{\mathbf{v}j} \leq w_j,$$

defines a **facet** of \mathcal{ECP} .

Block inequalities

Let $v \in V$ and $j \leq n-2$. Then, the block inequality

$$\sum_{k=j}^n x_{vj} \leq w_j,$$

is valid for \mathcal{ECP} . If $j - 1 \notin \mathscr{A}(G)$, it defines a facet of \mathcal{ECP} .

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computational results

(S, Q)-2-rank inequalities

Let $Q = \{q : q \in S, S \subset N[q]\}$. The (S, Q)-2-rank inequality defined as

$$\sum_{\substack{\in S \setminus Q}} x_{vj} + 2 \sum_{\substack{v \in Q}} x_{vj} \le 2w_j,$$

is valid for \mathcal{ECP} .

Example: $Q = \{1, 2\}$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computational results

(S, Q)-2-rank inequalities

Let $Q = \{q : q \in S, S \subset N[q]\}$. The (S, Q)-2-rank inequality defined as

$$\sum_{\substack{\in S \setminus Q}} x_{vj} + 2 \sum_{\substack{v \in Q}} x_{vj} \le 2w_j,$$

is valid for \mathcal{ECP} .

Example: $Q = \{1, 2\}$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

Let $Q = \{q : q \in S, S \subset N[q]\}$. The (S, Q)-2-rank inequality defined as

$$\sum_{\in S \setminus Q} x_{vj} + 2 \sum_{v \in Q} x_{vj} \le 2w_j,$$

is valid for \mathcal{ECP} .

Example: $Q = \{1, 2\}$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

v

Let $Q = \{q : q \in S, S \subset N[q]\}$. The (S, Q)-2-rank inequality defined as _____

$$\sum_{\in S \setminus Q} x_{vj} + 2 \sum_{v \in Q} x_{vj} \le 2w_j,$$

is valid for \mathcal{ECP} .

Example: $\mathbf{Q} = \{1, 2\}$

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

The (S, Q)-2-rank inequality defines a **facet** of \mathcal{ECP} if:

- |*Q*| ≥ 2
- no connected component of $\overline{G[S \setminus Q]}$ is bipartite

• $\forall v \in V \setminus S$, $Q \cup \{v\}$ is not a clique

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(*S*, *Q*)-2-rank inequalities

- |Q| ≥ 2
- no connected component of $\overline{G[S \setminus Q]}$ is bipartite
- $\forall v \in V \setminus S$, $Q \cup \{v\}$ is not a clique

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

- |Q| ≥ 2
- no connected component of $\overline{G[S \setminus Q]}$ is bipartite
- $j \leq \lceil n/2 \rceil 1$
- $\forall v \in V \setminus S$ such that $Q \cup \{v\}$ is a clique, $\exists H$ such that:
 - *H* stable set with |H| = 3
 - *v* ∈ *H*
 - $|H \cap S| = 2$
 - $n \text{ odd} \longrightarrow \overline{G H}$ has a perfect matching
 - *n* even $\longrightarrow \exists$ another stable set H' such that:
 - |*H*′| = 3
 - $H \cap H' = \emptyset$
 - $\overline{G (H \cup H')}$ has a perfect matching

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

- |Q| ≥ 2
- no connected component of $\overline{G[S \setminus Q]}$ is bipartite
- $j \leq \lceil n/2 \rceil 1$
- $\forall v \in V \setminus S$ such that $Q \cup \{v\}$ is a clique, $\exists H$ such that:
 - *H* stable set with |H| = 3
 - *v* ∈ *H*
 - $|H \cap S| = 2$
 - $n \text{ odd} \longrightarrow \overline{G H}$ has a perfect matching
 - *n* even $\longrightarrow \exists$ another stable set H' such that:
 - |*H*′| = 3
 - $H \cap H' = \emptyset$
 - $\overline{G (H \cup H')}$ has a perfect matching

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

(S, Q)-2-rank inequalities

- |Q| ≥ 2
- no connected component of $\overline{G[S \setminus Q]}$ is bipartite
- $j \leq \lceil n/2 \rceil 1$
- $\forall v \in V \setminus S$ such that $Q \cup \{v\}$ is a clique, $\exists H$ such that:
 - *H* stable set with |H| = 3
 - *v* ∈ *H*
 - $|H \cap S| = 2$
 - $n \text{ odd} \longrightarrow \overline{G H}$ has a perfect matching
 - *n* even $\longrightarrow \exists$ another stable set H' such that:
 - |*H*′| = 3
 - $H \cap H' = \emptyset$
 - $\overline{G (H \cup H')}$ has a perfect matching

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• in $\mathcal{ECP} \longrightarrow |C_j| \le \lceil n/j \rceil$ • $\gamma_{kS} = \min\{\lceil n/k \rceil, \alpha(S)\}$

Subneighborhood inequalities

The (*u*, *j*, *S*)-subneighborhood inequality defined as

$$\gamma_{jS} x_{uj} + \sum_{v \in S} x_{vj} + \sum_{k=j+1}^{n} (\gamma_{jS} - \gamma_{kS}) x_{uk} \leq \gamma_{jS} w_j,$$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• In $\mathcal{ECP} \longrightarrow |C_j| \le |n/j$ • $\gamma_{kS} = \min\{\lceil n/k \rceil, \alpha(S)\}$

Subneighborhood inequalities

The (*u*, *j*, *S*)-subneighborhood inequality defined as

$$\gamma_{jS} x_{uj} + \sum_{v \in S} x_{vj} + \sum_{k=j+1}^{n} (\gamma_{jS} - \gamma_{kS}) x_{uk} \leq \gamma_{jS} w_j,$$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

Subneighborhood inequalities

The (*u*, *j*, *S*)-subneighborhood inequality defined as

$$\gamma_{jS} x_{uj} + \sum_{v \in S} x_{vj} + \sum_{k=j+1}^{n} (\gamma_{jS} - \gamma_{kS}) x_{uk} \leq \gamma_{jS} w_j,$$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• in
$$\mathcal{ECP} \longrightarrow |C_j| \le \lceil n/j \rceil$$

• $\gamma_{kS} = \min\{\lceil n/k \rceil, \alpha(S)\}$

Subneighborhood inequalities

The (u, j, S)-subneighborhood inequality defined as

$$\gamma_{jS} x_{uj} + \sum_{v \in S} x_{vj} + \sum_{k=j+1}^{n} (\gamma_{jS} - \gamma_{kS}) x_{uk} \leq \gamma_{jS} w_j,$$

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

$$\begin{split} &j \leq \lfloor n/2 \rfloor \\ &u \in V \text{ not universal in } G \\ &N(u) \text{ not a clique} \\ &\text{we focus on } V \backslash N[u] \end{split}$$

• $\forall j$ -eqcol $\longrightarrow |C_j| \ge \lfloor n/j \rfloor$ • $x_{uj} = 1 \longrightarrow \lfloor n/j \rfloor - 1$ vertices of $V \setminus N[u]$ uses color $\int (\lfloor n/j \rfloor - 1) x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} \le 0$ valid for *j*-eqcols

Outside-neighborhood inequalities

The (*u*,*j*)-*outside-neighborhood inequality* defined as

$$(\lfloor n/j \rfloor - 1) x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} + \sum_{k=j+1}^n b_{jk} x_{uk} \leq \sum_{k=j+1}^n b_{jk} (w_k - w_{k+1}),$$

where $b_{jk} = \lfloor n/j \rfloor - \lfloor n/k \rfloor$, is **valid** for \mathcal{ECP} .

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

$$\begin{split} &j \leq \lfloor n/2 \rfloor \\ &u \in V \quad \text{not universal in } G \\ &N(u) \quad \text{not a clique} \\ &\text{we focus on } V \backslash N[u] \end{split}$$

∀ j-eqcol → |C_j| ≥ ⌊n/j⌋
 x_{uj} = 1 → ⌊n/j⌋ - 1 vertices of V\N[u] uses color j
 (⌊n/j⌋ - 1)x_{uj} - ∑_{v∈V} ×_{vj} ≤ 0 valid for j-eqcols

Outside-neighborhood inequalities

The (*u*,*j*)-*outside-neighborhood inequality* defined as

$$(\lfloor n/j \rfloor - 1) x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} + \sum_{k=j+1}^{n} b_{jk} x_{uk} \leq \sum_{k=j+1}^{n} b_{jk} (w_k - w_{k+1}),$$

where $b_{jk} = \lfloor n/j \rfloor - \lfloor n/k \rfloor$, is **valid** for \mathcal{ECP} .

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

 $\begin{array}{l} j \leq \lfloor n/2 \rfloor \\ u \in V \quad \text{not universal in } G \\ N(u) \quad \text{not a clique} \\ \text{we focus on } V \setminus N[u] \end{array}$

• $\forall j$ -eqcol $\longrightarrow |C_j| \ge \lfloor n/j \rfloor$ • $x_{uj} = 1 \longrightarrow \lfloor n/j \rfloor - 1$ vertices of $V \setminus N[u]$ uses color j $(\lfloor n/j \rfloor - 1)x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} \le 0$ valid for j-eqcols

Outside-neighborhood inequalities

The (*u*,*j*)-outside-neighborhood inequality defined as

$$(\lfloor n/j \rfloor - 1) x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} + \sum_{k=j+1}^n b_{jk} x_{uk} \leq \sum_{k=j+1}^n b_{jk} (w_k - w_{k+1}),$$

where $b_{jk} = \lfloor n/j \rfloor - \lfloor n/k \rfloor$, is **valid** for \mathcal{ECP} .

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

 $j \leq \lfloor n/2 \rfloor$ $u \in V$ not universal in GN(u) not a clique we focus on $V \setminus N[u]$

• $\forall j$ -eqcol $\longrightarrow |C_j| \ge \lfloor n/j \rfloor$ • $x_{uj} = 1 \longrightarrow \lfloor n/j \rfloor - 1$ vertices of $V \setminus N[u]$ uses color j $(\lfloor n/j \rfloor - 1)x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} \le 0$ valid for j-eqcols

Outside-neighborhood inequalities

The (u, j)-outside-neighborhood inequality defined as

$$(\lfloor n/j \rfloor - 1)x_{uj} - \sum_{v \in V \setminus N[u]} x_{vj} + \sum_{k=j+1}^{n} b_{jk}x_{uk} \le \sum_{k=j+1}^{n} b_{jk}(w_k - w_{k+1}),$$

where $b_{jk} = \lfloor n/j \rfloor - \lfloor n/k \rfloor$, is **valid** for \mathcal{ECP} .

Polyhedral results for the ECP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

 $\begin{array}{l} j,k \text{ such that } j \leq k \leq n-2 \\ u \in V \\ N(u) \quad \text{not a clique} \\ Q \text{ clique such that } Q \cap N[u] = \varnothing \end{array}$

• following the same reasoning as in the previous cases:

Clique-neighborhood inequalities

The (u,j,k,Q)-clique-neighborhood inequality defined as

$$(\lceil n/k \rceil - 1) x_{ul} + \sum_{v \in N(u) \cup Q} x_{vl} + \sum_{l=k+1}^{n} (\lceil n/k \rceil - \lceil n/l \rceil) x_{ul} + \sum_{v \in V} x_{vn-1} + \sum_{v \in V \setminus \{u\}} x_{vr}$$

$$\leq \sum_{l=j}^{k-1} b_{ul} (w_l - w_{l+1}) + \sum_{l=k}^{n-2} \lceil n/k \rceil (w_l - w_{l+1}) + \sum_{l=n-1}^{n} (\lceil n/k \rceil + 1) (w_l - w_{l+1}),$$

 where $b_{ul} = \min\{\lceil n/l \rceil, \alpha(N(u)) + 1\}$, is valid for \mathcal{ECP} .

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

 $\begin{array}{l} j,k \text{ such that } j \leq k \leq n-2 \\ u \in V \\ N(u) \text{ not a clique} \\ Q \text{ clique such that } Q \cap N[u] = \varnothing \end{array}$

• following the same reasoning as in the previous cases:

Clique-neighborhood inequalities

The (u, j, k, Q)-clique-neighborhood inequality defined as

$$(\lceil n/k \rceil - 1) x_{uj} + \sum_{v \in N(u) \cup Q} x_{vj} + \sum_{l=k+1}^{n} (\lceil n/k \rceil - \lceil n/l \rceil) x_{ul} + \sum_{v \in V} x_{vn-1} + \sum_{v \in V \setminus \{u\}} x_{vn}$$

$$\leq \sum_{l=j}^{k-1} b_{ul} (w_l - w_{l+1}) + \sum_{l=k}^{n-2} \lceil n/k \rceil (w_l - w_{l+1}) + \sum_{l=n-1}^{n} (\lceil n/k \rceil + 1) (w_l - w_{l+1}),$$

 where $b_{ul} = \min\{\lceil n/l \rceil, \alpha(N(u)) + 1\}$, is valid for \mathcal{ECP} .

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

- S = set of colors

d_{Sk} = |S ∩ {1,...,k}| (available colors in a k-eqcol
b_{Sk} = d_{Sk} Lⁿ_k + min{d_{Sk}, n - k Lⁿ_k}

 $\sum_{j \in S} \sum_{v \in V} x_{vj} \le b_{Sk} \text{ valid for } k \text{-eqcols}$

S-color inequalities

The S-color inequality defined as

$$\sum_{j\in S}\sum_{v\in V}x_{vj}\leq \sum_{k=1}^n b_{Sk}(w_k-w_{k+1}),$$

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

- S = set of colors
- $k \leq n$
- $d_{Sk} = |S \cap \{1, \dots, k\}|$ (available colors in a k-eqcol)

• $b_{Sk} = d_{Sk} \lfloor \frac{n}{k} \rfloor + \min\{d_{Sk}, n - k \lfloor \frac{n}{k} \rfloor\}$

 $\sum_{j \in S} \sum_{v \in V} x_{vj} \le b_{Sk} \text{ valid for } k \text{-eqcols}$

S-color inequalities

The S-color inequality defined as

$$\sum_{j\in S}\sum_{v\in V}x_{vj}\leq \sum_{k=1}^n b_{Sk}(w_k-w_{k+1}),$$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

- Polyhedral study of the formulation
- Computationa results

- S = set of colors
- $k \leq n$
- $d_{Sk} = |S \cap \{1, \dots, k\}|$ (available colors in a k-eqcol)
- $b_{Sk} = d_{Sk} \lfloor \frac{n}{k} \rfloor + \min\{d_{Sk}, n k \lfloor \frac{n}{k} \rfloor\}$
 - $\sum_{j \in S} \sum_{v \in V} x_{vj} \le b_{Sk} \text{ valid for } k \text{-eqcols}$

S-color inequalities

The S-color inequality defined as

$$\sum_{j\in S}\sum_{v\in V}x_{vj}\leq \sum_{k=1}^n b_{Sk}(w_k-w_{k+1}),$$

Polyhedral results for the

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

- S = set of colors
- k ≤ n
- $d_{Sk} = |S \cap \{1, \dots, k\}|$ (available colors in a k-eqcol)
- $b_{Sk} = d_{Sk} \lfloor \frac{n}{k} \rfloor + \min\{d_{Sk}, n k \lfloor \frac{n}{k} \rfloor\}$

$$\sum_{j \in S} \sum_{v \in V} x_{vj} \le b_{Sk} \text{ valid for } k \text{-eqcols}$$

S-color inequalities

The S-color inequality defined as

$$\sum_{j\in S}\sum_{v\in V}x_{vj}\leq \sum_{k=1}^n b_{Sk}(w_k-w_{k+1}),$$

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- For every family of valid inequalities presented previously:
 - Sufficient conditions in order to be facet-defining inequalities.
 - If $\hat{\mathscr{F}} =$ face defined by the inequality, $\dim(\mathscr{F}) = o(n^2) = o(\dim(\mathcal{ECP}))$
- Separation routines:
 - Heuristics:
 - Clique ineq.
 - (*S*, *Q*)-2-rank ineq.
 - S-color ineq.
 - Enumeration:
 - Block ineq.
 - (*u*, *j*, *N*(*u*))-subneighborhood ineq.
 - (u, j)-outside-neighborhood ineq.
 - (*u*, *j*, *k*, *Q*)-clique-neighborhood: We take advantage of cliques found previously

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- For every family of valid inequalities presented previously:
 - Sufficient conditions in order to be facet-defining inequalities.
 - If $\mathscr{F} =$ face defined by the inequality, $\dim(\mathscr{F}) = o(n^2) = o(\dim(\mathcal{ECP}))$
- Separation routines:
 - Heuristics:
 - Clique ineq.
 - (*S*, *Q*)-2-rank ineq.
 - S-color ineq.
 - Enumeration:
 - Block ineq.
 - (u, j, N(u))-subneighborhood ineq.
 - (u, j)-outside-neighborhood ineq.
 - (*u*, *j*, *k*, *Q*)-clique-neighborhood: We take advantage of cliques found previously

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- For every family of valid inequalities presented previously:
 - Sufficient conditions in order to be facet-defining inequalities.
 - If $\mathscr{F} =$ face defined by the inequality, $\dim(\mathscr{F}) = o(n^2) = o(\dim(\mathcal{ECP}))$
- Separation routines:
 - Heuristics:
 - Clique ineq.
 - (*S*, *Q*)-2-rank ineq.
 - S-color ineq.
 - Enumeration:
 - Block ineq.
 - (*u*, *j*, *N*(*u*))-subneighborhood ineq.
 - (u, j)-outside-neighborhood ineq.
 - (u, j, k, Q)-clique-neighborhood: We take advantage of cliques found previously

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- For every family of valid inequalities presented previously:
 - Sufficient conditions in order to be facet-defining inequalities.
 - If $\mathscr{F} =$ face defined by the inequality, $\dim(\mathscr{F}) = o(n^2) = o(\dim(\mathcal{ECP}))$
- Separation routines:
 - Heuristics:
 - Clique ineq.
 - (*S*, *Q*)-2-rank ineq.
 - S-color ineq.
 - Enumeration:
 - Block ineq.
 - (u, j, N(u))-subneighborhood ineq.
 - (u, j)-outside-neighborhood ineq.
 - (*u*,*j*, *k*, *Q*)-clique-neighborhood: We take advantage of cliques found previously

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

- For every family of valid inequalities presented previously:
 - Sufficient conditions in order to be facet-defining inequalities.
 - If $\mathscr{F} =$ face defined by the inequality, $\dim(\mathscr{F}) = o(n^2) = o(\dim(\mathcal{ECP}))$
- Separation routines:
 - Heuristics:
 - Clique ineq.
 - (*S*, *Q*)-2-rank ineq.
 - S-color ineq.
 - Enumeration:
 - Block ineq.
 - (u, j, N(u))-subneighborhood ineq.
 - (u, j)-outside-neighborhood ineq.
 - (*u*, *j*, *k*, *Q*)-clique-neighborhood: We take advantage of cliques found previously

Computational results

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• Comparison between:

- BC⁺ = B&C with all inequalities
- BC = B&C with only clique inequalities [Méndez-Díaz, Nasini, S.- (2010)]
- ${\scriptstyle \bullet \ }$ CPX = CPLEX with default parameters
- LF₂ = B&C based on *asymmetric representatives* [Bahiense, Frota, Maculan, Noronha, Ribeiro (2009)]
- 50 instances of 70 vertices
- 2 hours time limit

		solv		st.	Nodes (average)				Time sec. (average)			
	BC ⁺	BC	СРХ	LF_2	BC^+	BC	СРХ	LF_2	BC^+	BC	СРХ	LF_2
10	100	100	100	100	3.4	4	13.3	57			4	109
					2135	3949			276	224		
50	70	70			7932	21595			1354	2145		
70			10	100	525	2970	214	678	128	446	4380	273
	100	100	100	100	5.1	14.5		9.4	2.6	2.8	29	11

Computational results

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• Comparison between:

- BC⁺ = B&C with all inequalities
- BC = B&C with only clique inequalities [Méndez-Díaz, Nasini, S.- (2010)]
- CPX = CPLEX with default parameters
- LF₂ = B&C based on *asymmetric representatives* [Bahiense, Frota, Maculan, Noronha, Ribeiro (2009)]
- 50 instances of 70 vertices
- 2 hours time limit

	% solved inst.				Nodes (average)				Time sec. (average)			
	BC^+	BC	СРХ	LF_2	BC^+	BC	СРХ	LF_2	BC^+	BC	СРХ	LF_2
10	100	100	100	100	3.4	4	13.3	57			4	109
					2135	3949			276	224		
50	70	70			7932	21595			1354	2145		
70			10	100	525	2970	214	678	128	446	4380	273
	100	100	100	100	5.1	14.5		9.4	2.6	2.8	29	11

Computational results

Polyhedral results for the FCP

Méndez-Díaz, Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

• Comparison between:

- BC⁺ = B&C with all inequalities
- BC = B&C with only clique inequalities [Méndez-Díaz, Nasini, S.- (2010)]
- CPX = CPLEX with default parameters
- LF₂ = B&C based on *asymmetric representatives* [Bahiense, Frota, Maculan, Noronha, Ribeiro (2009)]
- 50 instances of 70 vertices
- 2 hours time limit

%	% solved inst.				N	odes (a	verag	ge)	Time sec. (average)				
dens.	BC ⁺	BC	СРХ	LF_2	BC ⁺	BC	СРХ	LF_2	BC ⁺	BC	СРХ	LF_2	
10	100	100	100	100	3.4	4	13.3	57	0.3	0.3	4	109	
30	90	90	0	0	2135	3949	_	—	276	224	_	_	
50	70	70	0	0	7932	21595	_	—	1354	2145	_	_	
70	80	80	10	100	525	2970	214	678	128	446	4380	273	
90	100	100	100	100	5.1	14.5	30	9.4	2.6	2.8	29	11	

Polyhedral results for the ECP

Méndez-Díaz Nasini, Severin

Introduction

Polyhedral study of the formulation

Computationa results

THANKS!