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Definitions

Classic coloring

Let G = (V , E ). A k-coloring is a partition of V in C1, C2, . . .,
Ck such that:

uv ∈ E , u ∈ Cj =⇒ v /∈ Cj

Equitable coloring

A k-eqcol is a k-coloring such that:

||Ci | − |Cj || ≤ 1 ∀ i , j = 1, . . . , k

Equitable chromatic number

χeq(G ) = min{k : G admits a k-eqcol}

ECP consists in finding χeq(G ).
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A bit of history about ECP...

Definition and first results [Meyer (1973)]

Applications:

Municipal garbage collection service [Tucker 1973]
Traffic signal control [Irani, Leung (1996)]
Parallel memory systems [Das, Finocchi, Petreschi (2006)]

ECP is NP-Hard [Kubale, Furmanczyk (2005)]

IP model and C&B [Méndez-D́ıaz, Nasini, S.- (Alio/Euro

2008)]

B&C-LF2 based on asymmetric representatives model
[Bahiense, Frota, Maculan, Noronha, Ribeiro (LAGOS 2009)]

Tabu search and B&C based on clique inequalities
[Méndez-D́ıaz, Nasini, S.- (INFORMS 2010)]
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In this work...

Polyhedral study of the IP formulation used
by our B&C

5 families of valid inequalities

Computational results

Comparison between B&C

with clique inequalities

with all inequalities
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IP model for classic coloring [Méndez-D́ıaz, Zabala (2006)]

xvj =

{

1 color j is assigned to v ,

0 otherwise,
wj =

{

1 xvj = 1 for some v ,

0 otherwise.

min

n
X

j=1

wj

s.t.
n

X

j=1

xvj = 1, ∀ v ∈ V

xuj + xvj ≤ wj , ∀ uv ∈ E , j = 1, . . . , n

xvj ≤ wj , ∀ v isolated, j = 1, . . . , n

wj+1 ≤ wj , ∀ j = 1, . . . , n − 1

X

v∈V

xvj ≥ wn +

n−1
X

k=j

—

n

k

�

(wk − wk+1), ∀ j = 1, . . . , n − 1

X

v∈V

xvj ≤ wn +

n−1
X

k=j

‰

n

k

ı

(wk − wk+1), ∀ j = 1, . . . , n − 1

Coloring polytope

CP = convex hull of colorings of G
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IP model for ECP [Méndez-D́ıaz, Nasini, S.- (2009)]

xvj =
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Dimension

Equitable coloring polytope

ECP = convex hull of equitable colorings of G

A (G ) = {k : G does not admit any k-eqcol}

Example: K3,3 only admits 2,4,5 and 6-eqcols
−→ A (K3,3) = {1, 3}

Dimension of ECP

dim(ECP) = n2 − (|A (G )| + 2)

Example: dim(K3,3) = 32
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Known valid inequalities for CP

Clique inequalities

Let j ≤ n − 1 and Q be maximal clique of G such that |Q| ≥ 2.
Then, the clique inequality

∑

v∈Q

xvj ≤ wj ,

defines a facet of ECP.

Block inequalities

Let v ∈ V and j ≤ n − 2. Then, the block inequality

n
∑

k=j

xvj ≤ wj ,

is valid for ECP. If j − 1 /∈ A (G ), it defines a facet of ECP.
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Known valid inequalities for CP

1 2
3

4
5

6
7

8 9
j ≤ n − 1
S ⊂ V with α(S) = 2

∑

v∈S

xvj ≤ 2wj valid for CP

(S , Q)-2-rank inequalities

Let Q = {q : q ∈ S , S ⊂ N[q]}. The (S , Q)-2-rank inequality

defined as
∑

v∈S\Q

xvj + 2
∑

v∈Q

xvj ≤ 2wj ,

is valid for ECP.

Example: Q = {1, 2}
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Known valid inequalities for CP

(S , Q)-2-rank inequalities

The (S , Q)-2-rank inequality defines a facet of ECP if:

|Q| ≥ 2

no connected component of G [S\Q] is bipartite

∀ v ∈ V \S , Q ∪ {v} is not a clique
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Known valid inequalities for CP

(S , Q)-2-rank inequalities

The (S , Q)-2-rank inequality defines a facet of ECP if:

|Q| ≥ 2

no connected component of G [S\Q] is bipartite

j ≤ ⌈n/2⌉ − 1

∀ v ∈ V \S such that Q ∪ {v} is a clique, ∃ H such that:

H stable set with |H| = 3
v ∈ H

|H ∩ S | = 2
n odd −→ G − H has a perfect matching
n even −→ ∃ another stable set H ′ such that:

|H ′| = 3
H ∩ H ′ = ∅

G − (H ∪ H ′) has a perfect matching
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Known valid inequalities for CP

u

j ≤ n − 1
u ∈ V

S ⊂ N(u) not a clique

α(S)xuj +
∑

v∈S

xvj ≤ α(S)wj valid for CP

in ECP −→ |Cj | ≤ ⌈n/j⌉

γkS = min{⌈n/k⌉, α(S)}

Subneighborhood inequalities

The (u, j , S)-subneighborhood inequality defined as

γjSxuj +
∑

v∈S

xvj+
n

∑

k=j+1

(γjS − γkS)xuk ≤ γjSwj ,

is valid for ECP.
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New valid inequalities for ECP

u

j ≤ ⌊n/2⌋
u ∈ V not universal in G

N(u) not a clique
we focus on V \N[u]

.

∀ j-eqcol −→ |Cj | ≥ ⌊n/j⌋

xuj = 1 −→ ⌊n/j⌋ − 1 vertices of V \N[u] uses color j

(⌊n/j⌋ − 1)xuj −
∑

v∈V \N[u]

xvj ≤ 0 valid for j-eqcols

Outside-neighborhood inequalities

The (u, j)-outside-neighborhood inequality defined as

(⌊n/j⌋ − 1)xuj −
∑

v∈V\N[u]

xvj+

n
∑

k=j+1

bjkxuk ≤

n
∑

k=j+1

bjk(wk − wk+1),

where bjk = ⌊n/j⌋ − ⌊n/k⌋, is valid for ECP.
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New valid inequalities

u

j , k such that j ≤ k ≤ n − 2
u ∈ V

N(u) not a clique
Q clique such that Q ∩ N[u] = ∅

.

following the same reasoning as in the previous cases:

Clique-neighborhood inequalities

The (u, j , k , Q)-clique-neighborhood inequality defined as

`

⌈n/k⌉−1
´

xuj+
X

v∈N(u)∪Q

xvj+

n
X

l=k+1

`

⌈n/k⌉ − ⌈n/l⌉
´

xul +
X

v∈V

xvn−1 +
X

v∈V\{u}

xvn

≤

k−1
X

l=j

bul(wl − wl+1)+

n−2
X

l=k

⌈n/k⌉(wl−wl+1)+

n
X

l=n−1

(⌈n/k⌉ + 1)(wl − wl+1),

where bul = min{⌈n/l⌉, α(N(u)) + 1}, is valid for ECP.
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New valid inequalities

S = set of colors

k ≤ n

dSk = |S ∩ {1, . . . , k}| (available colors in a k-eqcol)

bSk = dSk⌊
n
k
⌋ + min{dSk , n − k⌊ n

k
⌋}

∑

j∈S

∑

v∈V

xvj ≤ bSk valid for k-eqcols

S-color inequalities

The S-color inequality defined as

∑

j∈S

∑

v∈V

xvj ≤
n

∑

k=1

bSk(wk − wk+1),

is valid for ECP.
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More results

For every family of valid inequalities presented previously:

Sufficient conditions in order to be facet-defining
inequalities.
If F = face defined by the inequality,
dim(F ) = o(n2) = o(dim(ECP))

Separation routines:
Heuristics:

Clique ineq.
(S , Q)-2-rank ineq.
S-color ineq.

Enumeration:

Block ineq.
(u, j , N(u))-subneighborhood ineq.
(u, j)-outside-neighborhood ineq.

(u, j , k,Q)-clique-neighborhood: We take advantage of
cliques found previously
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Computational results

Comparison between:

BC+ = B&C with all inequalities
BC = B&C with only clique inequalities
[Méndez-D́ıaz, Nasini, S.- (2010)]
CPX = CPLEX with default parameters
LF2 = B&C based on asymmetric representatives

[Bahiense, Frota, Maculan, Noronha, Ribeiro (2009)]

50 instances of 70 vertices

2 hours time limit

% % solved inst. Nodes (average) Time sec. (average)
dens. BC+ BC CPX LF2 BC+ BC CPX LF2 BC+ BC CPX LF2

10 100 100 100 100 3.4 4 13.3 57 0.3 0.3 4 109
30 90 90 0 0 2135 3949 − − 276 224 − −
50 70 70 0 0 7932 21595 − − 1354 2145 − −
70 80 80 10 100 525 2970 214 678 128 446 4380 273
90 100 100 100 100 5.1 14.5 30 9.4 2.6 2.8 29 11
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