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Abstract. An equitable coloring is a way of coloring the vertices of a graph such thairaf adjacent
vertices do not share the same color and any pair of color classesidiffiee by at most one. Given a
graphG, the equitable coloring problem is to find the minimum number of colors needasd &ohave
an equitable coloring ofr.

Itis known that Branch & Cut algorithms based on the polyhedral stuigedr integer programming
(IP) models have proven to be an important tool to deal with traditional cgigniablems.

The goal of this work is to give an IP formulation for the equitable coloringpbfem, studying its
polyhedral structure, and develop a cutting plane algorithm. These afiestheteps to make a further
Branch & Cut algorithm.

1 Introduction

Many applications require to split a set of conflicting elersentobalancedand no conflic-
tive classesRemmaraju2001; Tucker, 1973. These kind of applications are usually modeled
as a graph coloring problem with additional restrictionglmncolor class sizes. In particular, in
theequitable coloring problent is required that the difference between the sizes of amygba
color classes is at most one. The equitable coloring proltesifirst studied byveyer(1973.
Like many graph optimization problems, the equitable dapproblem belongs to the class of
NP-Hard problemsHurmahczyk and Kubalg2005.

From now on, we assume th@t= (V, F) is a simple graph wheré = N = {1,...,n} and
E is the set of edges @f. Given ak-coloring of G, we denote by’; the jth color class, for each
j € N. A k-coloring is arequitablek-coloring (or justk-eqcol) if and only if| |C;| — |C}|| < 1,
fori,j=1,... k.

The equitable chromatic numbest G, x.,(G), is the minimunk for which there exists a
k-eqcol inG. Whenever it is clear from the context, we writg, rather thany.,(G).

The equitable coloring problem presents some additiomallisi with respect to the coloring
problem. First, a graph admiting faeqcol may not admit &k + 1)-eqcol. For example,
Xeq(K33) = 2 butthere is not a 3-eqcol iR’; 3. Then, we denote hy/ (G) theset of admissible
equitable coloring®f G, i.e

o/ (G) ={k € N : G admits ak-eqcol}.

In this way,.«7 (K3 3) = {2,4,5,6}.
Also, the equitable chromatic number of a graph can be smldan the equitable chromatic
number of one of its subgraphs. For instance, consideragli$tonnected graphl = K; 5 U



Ki5 U Ki5, Xe(G) = 3 but x.,(K;5) = 4. So, we can not restrict ourselves to connected
graphs as in the case of traditional coloring problems.

Let A be the maximum degree of vertices @ It is known thatA + 1, ..., n € &
(Hajnal and Szemeédi, 1970. Moreover,Kierstead and Kostochk@008 presents a polyno-
mial algorithm for finding g A + 1)-eqcol.

Greedy heuristics for the problem can be foundkarfnaiczyk and Kubalg2005. How-
ever, as far as we know, there are no previous works on IP lexsed algorithms as in the case
of coloring problem éndez-Daz and Zabala2006 Figueiredo et a).2002 Camyklo et al,
2004 Mehrotra and Trick1996.

Clearly, IP models for the coloring problem can be adaptedherequitable coloring prob-
lem by addition of theequity constraintsin particular, we consider the model for the coloring
problem presented bylendez-Daz and Zabal§2006, which has shown a good performance
in the context of a Branch & Cut algorithm based on its polyhlestraly.

In that work, the authors use binary variablEse {0,1}** andW e {0,1}" to represent
colorings as follows: for each vertexe V' and colorj € N,

wj—

1 if color j is assigned to vertex 1 if z,; = 1for some vertex,
Lyj = . — .
! 0 otherwise 0 otherwise

The restrictions in this model are:

e assignment constraintsaying that each vertex has to be painted by an unique celor,
vajzl, YvelV, (2)
j=1

e edge constraintssaying that two adjacent vertices can not share the sarog cel

Tyj + Toj < wj, Vuv e E, j €N, (2)

e color order constraintsavoiding to consider solutions corresponding to someselasf
symmetrick-colorings, i.e.

Wi < wj, VjeN—{n} )

The coloring polytopeCP(G), is the convex hull of X, 1) € {0,1}""*" satisfying the con-
straints (), (2) and @). The chromatic number can be computed by minimizjrj@1 w; on
CP.

In order to obtain an IP model for the equitable coloring fpeoh we need to addquity
constraintsi.e. we have to linearize the non linear constrajdty_, =, — >, _, .,;| < 1, for
i, 7 such thatw; = w; = 1.
Firstly, let us observe that the natural constraint “if eglas not used in the coloring, no vertex
can be painted by’ is implied by (2) for non isolated vertices. However, since in the equitable
coloring problem the graph could be disconnected, we acetbto add these constraints for
isolated vertices. Let C V be the set of isolated vertices. Then, we have to add theraomtst

xijgwj, VZGI,jGN (4)

In the next section we analyze several ways for modellingtggonstraints.



2 Modelling equity constraints

We first analyze the formulation proposed Bghiense et al2007), where the equity con-
straints are modeled by usinda M constant: for alk, j € N such that < 7,

v=1

= v=1

It is known that this kind of constraints usually give bacekn relaxations. In order to reduce
the use of thdig M constant, we propose to introduce a new free varialdad to model the
equity constraint as follows:

y+ M1 —w) <> my <y+1, VjeN.

v=1

Finally, we propose a third formulation based in the followresults. Let us observe that,
in ak-eqcol, the color class sizes have only two possible valMeseover,

Lemma 1. Givenk € N, lety = [n/k| andp = n mod k. Then, every:-eqcol has color
classes of sizg + 1 andk — p color classes of sizg.

Let us note that, if we restrict ourselves keeqcols such thatC;| > |C;| wheni < j,
th = |C;| is well defined and

ln/k)+1 if j <p,
th =4 |n/k] if p<j <k,
0 if £ <j.

From now on, &-eqcol is ak-eqcol satisfyindC;| > |C;| wheni < j. Thus, we have

Proposition 2. Let (X, W) be an integer point it€’P satisfying 4) and

n

> wy =Y (H—th_ ), VjeN—{1}. (5)

k=2
Then, the(} 7, w;)-coloring associated witl.X, V) is equitable.

Let us observe that in5f we do not need to consider color 1 because, for this case, the
constraint can be obtained as a linear combination of caingr () and 6). Furthermore,
constrains?) and @) with j > |n/2| are dominated by5) and the nonnegativity of,;.

We tested the previous three formulations by solving snrmsliainces using a pure Branch
& Bound method and we concluded that the third one outperfan@®thers. In this way, we
decided to work with the formulation where equity contraiate modeled by5j. Then, our
model for the equitable coloring problem usés+ n variables and|E| + |I|) |n/2] + 3n — 2
constraints.



3 The equitable coloring polytope

We define thequitable coloring polytopef GG, ECP((G), as the convex hull of integer points
of CP satisfying @) and 6).

Let us observe that colorings df, are equitable colorings and correspond to the set of
assignments between colorsinand vertices ifl/. Hence, the linear relaxation 6CP is an
integer polytope. So, in the sequel we will consides K, (or equivalently,y.,(G) < n).

We first study the dimension ¢fC’P. We prove that

Proposition 3. The dimension ofCP is n*> — 2n + |</| and a minimal equation system is
defined byw,,, = 1, w, = w41,V k ¢ 27 and the equalities in the formulation, i.e1)( (5).

In order to find facet-defining inequalities, we start anedgzalid inequalities in the formu-
lation. We have that

Proposition 4. The inequalityw; > w;;; defines a facet ofCP iff j € &/ — {n}. The
inequalityw; < 1 defines a facet &CP iff j = x., + 1. Forall j € N, the inequalityw; > 0
does not define a facet 6CP.

In the case of the nonnegativity constraints:ef, we have the following

Proposition 5. Letv € V andj € N. If, for everyk € & — {n}, there exists &-eqcol in
whichv ¢ C}, then the inequality,; > 0 defines a facet CP.

It is not hard to see that, if does not divide: + 1, the sufficient condition in the previous
proposition holds and we obtain

Corollary 6. If j does not divide: + 1, thenz,; > 0 defines a facet ECP, forall v € V.

If j # 1 andj dividesn + 1, the sufficient condition in Propositidhcan be reduced in the
following way

Corollary 7. Letj # 1 such thatj dividesn + 1. If j ¢ <7, z,; > 0 defines a facet fCP
forallv e V. If j € &, z,; > 0 defines a facet fCP for all v € V' such that there exists a
j-eqcol in whichv ¢ C.

Finally, for the first color we have

Corollary 8. z,; > 0 defines a facet ofCP for all v € V such that, it € o/ — {n} andk
dividesn — 1, there exists &-eqcol in whichv ¢ C.

Next, we show some cases where the nonnegativity consraret not facet-defining in-
equalities. IfG = K3, andw is one of the two vertices with degreea3, > 0 does not define
a facet because it is dominated by the valid inequaljty+ w3 > 1. Another example is when
V —{v} is aclique. In this case, the nonnegativity constraint eiased withz,; is dominated
by the valid inequalityz,; + w,, > 1.

Next step in the polyhedral study 8P is to find valid inequalities not included in the
formulation. It is natural to start with those facet-defminequalities foCP.

Given a maximal clique) of G andj € N, only one vertex of) can be painted with colgj.
This condition is imposed by theique constraint

Z Cl]vj S U)j. (6)

VEQR



We denote byF, ; the face defined bygj.

Although clique inequalities always define facet€®f, they can define facets 6CP only if
j < [n/2]. Infact, when; > |n/2], (6) is dominated byg) and the nonnegativity constraints.
So, we have

Proposition 9. Let Q be a maximal clique of7 of size at least 2, and < |n/2]. LetK =
{ked Q| <pr<j<kVj<p.<k—|Q|}, wherep, = n mod k, for eachk. The
clique inequality @) is facet-defining o€CP if the following conditions hold:

1. Forall k € K, there exists &-eqcol such thatC; N Q| = 1.
2. {[n/2],...,n—j}NA # 2.

Condition2 of Propositiond does not always hold. L&t be K5 ; and suppose two adjacent
verticesu, v. Thus,@ = {u,v} is a maximal clique but,; + z,3 < w3 does not define a facet
in ECP. An example where conditiohof Propositiond becomes false is the cliqég denoted
by squares in the graph given below: 1

1 1
4

Now, G admits a 4-eqcol but no vertex §f can use color 1. In this cas&, ; does not define
a facet ofECP.

Even when a clique inequality does not define a facet, it defrface of high dimension, as
we state in the following

Corollary 10. dim(Fg;) > dim(ECP) — (n+ || — |Q| — 1).

4 Computational experiments and conclusions

Our study in the previous section suggests that a cuttingepgégorithm based on clique
inequalities may be an effective way of strengthening thedr relaxation oECP. In order
to know whether the clique cuts make an improvement or notcovepare the behavior of a
pure Branch & Bound algorithm (B & B) with a Cut & Branch algorithm &B) that sepa-
rates clique inequalities at the root node. We show the pedace of both algorithms on 234
randomly generated graphs. The tests were performed on bli8asparc workstation, using
CPLEX 10.1 as the optimizer.

Table 1 summarizes the results. The first column is the number ofcestt The second
column is the graph densityow means 0-33%mediummeans 33-66% andigh means 66-
100%, where the percentage is calculated with|E|/(n(n — 1)/2). Columns 3 and 4 are
the percentage of succesfully solved instances (s.s.i.pdoh algorithm. An instance is not
solved whether the optimizer exceeds the time limit (1 hoGglumns 5-8 are the averages of
the evaluated nodes/elapsed time for each algorithm ostarines solved by both algorithms,
except the averages marked with (*) where they are calaiater s.s.i. of C & B.

In almost every instance, the addition of clique cuts hawnbeproved the performance of
the optimization. Furthermore, every solved instance by B 8as also been solved by C & B,
but not conversely.



n | Dens. % of s.s.i. Evaluated nodes Time in sec.
B&B |C&B |B&B | C&B |[B&B|[C&B

low 100 100 6 3 0 0

15| med. | 100 100 81 15 0 0
high | 100 100 226 55 1 0
low 100 100 22 5 0 0
20 | med.| 100 100 957 70 7 3
high | 100 100 515 16 5 2
low 100 100 119 34 3 2

25| med.| 87 | 100 |10082| 520 | 369 | 58
high | 50 90 | 25471 41 | 591 | 20
low | 100 | 100 | 91 | 105 6 6
30| med.| 22 78 | 499 | 39 43 28
high | © 33 — | 553 | — | 424*
low | 100 | 100 | 397 | 140 | 51 26
35| med.| 22 33 | 10724| 2254 | 2520 | 611
high | © 13 - 52 — | 181*

Table 1: Benchmarks for graphs from 15 to 35 vertices.
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