
A security types preserving compiler in Haskell

Cecilia Manzinoa, Alberto Pardob

aDepartamento de Ciencia de la Compuación, Universidad Nacional de Rosario, Argentina
bInstituto de Computación, Universidad de la República, Montevideo, Uruguay

Abstract

The analysis of information flow has become a popular technique for ensur-
ing the confidentiality of data. An end-to-end confidentiality policy guarantees
that private data cannot be inferred by the inspection of public data. A security
property that ensures a kind of confidentiality is the noninterference property,
which can be enforced by the use of security type systems where types corre-
spond to security levels. In this paper we show the development of a compiler
(written in Haskell) between a simple imperative language and semi-structured
machine code, which preserves the property of noninterference. The compiler
is based on the use of typed abstract syntax (implemented in terms of Haskell
GADTs and type-level functions) to encode the security type system of both
the source and target language. This makes it possible to use Haskell’s type
checker to verify two things: that programs in both languages satisfy the se-
curity property, and that the compiler is correct by construction (in the sense
that it preserves noninterference).

1. Introduction

The confidentiality of the information manipulated by computing systems
has became of significant importance with the increasing use of web applications.
Even though these applications are widely used, there is little assurance that
there is no leakage of confidential information to public output.

A technique that has been widely used in the last years for ensuring the con-
fidentiality of information is the analysis of information flow [1]. This technique
analyses information flows between inputs and outputs of systems. Flows can
be explicit or implicit. A flow from a variable x to a variable y is considered
explicit if the value of x is transferred directly to y. On the other hand, it is
implicit when the flow from x to y is generated by the control structure of the
program.

In this paper we deal with the security property of noninterference [2]. This
property guarantees that private data cannot be inferred by inspecting public

Email addresses: ceciliam@fceia.unr.edu.ar (Cecilia Manzino), pardo@fing.edu.uy
(Alberto Pardo)

Preprint submitted to Science of Computer Programming May 10, 2019

channels of information. This implies that a variation of private data does not
cause a variation of public data.

There are different approaches to ensure this security property. In this pa-
per we follow a type-based approach which relies on the use of a security type
system [3]. In this setting, variables are classified in different categories accord-
ing to which kind of data they can store (for example, public or confidential).
Modelling security properties in terms of types has the advantage that the prop-
erty can be checked at compile-time (during type checking). The overhead of
checking the property at run-time is thus partially reduced or even eliminated.

Although there is an important amount of work on type systems for non-
interference on high-level languages (e.g. [4, 3, 5]), there is little work on type
systems for noninterference on low-level languages. This is a consequence of
the lack of structure of low-level languages, which make them difficult to rea-
son about. Some of the existing works on security type systems for low-level
languages use code annotations to simulate the block structure of high-level
languages at the low-level [6, 7]. Others are based on the use of a basic implicit
structure present in low-level code [8].

The aim of this paper is to perform a simple, but nontrivial excercise: to
show that it is possible to write in a general purpose (functional) language like
Haskell a compiler that preserves the property of noninterference. We do so by
using Haskell plus some minor extensions, such as GADTs1, type families and
multi-parameter type classes, which open us the possibility to perform some
kind of type-level programming. The compiler we present translates programs
in a simple imperative high-level language (with loops and conditionals) into
programs in a semi-structured low-level language. We define the notion of non-
interference for each of these languages by the specification of a security type
system. Those type systems are represented in Haskell in terms of GADTs. We
then prove that the compiler preserves the security property, i.e., secure pro-
grams in the source language are translated into secure programs in the target
language. The novelty of the approach is that the preservation proof is auto-
matically checked by Haskell’s type system. That way we are proving, once and
for all, that the compiler is correct with respect to the property it preserves. In
other words, we are proving that the compiler is correct-by-construction. This is
a non-standard application of Haskell which resembles a language with depen-
dent types. We developed our implementation in the Glasgow Haskell Compiler
(GHC) using some of its extensions.

The paper is organized as follows. In Section 2 we present the high-level
language that serves as source language to our compiler and define a security
type system for it. We also describe how to encode the security type system in
Haskell. In section 3 we do the same with the low-level language that serves as
target language. We also present an encoding of this language and its secure
type system in Haskell. Section 4 presents the compiler and the proof that
it preserves security typing. Section 5 discusses related work and Section 6

1Generalized Algebraic Data Types

2

concludes the paper.

2. Source Language

In this section, we introduce the high level language that serves as source
language in the compilation. We start by describing its abstract syntax. Then
we define its semantics and the type system used to enforce secure information
flow within programs. Finally, we show an implementation of the syntax and
the type system in Haskell.

2.1. Syntax

As source language we consider a simple imperative language formed by
expressions and statements defined by the following abstract syntax:

e ::= n | x | e1 + e2

S ::= x := e | skip | S1;S2 | if e then S1 else S2 | while e do S

where e ∈ Exp (expresions) and S ∈ Stm (statements). Variables range over
identifiers (x ∈ Var) whereas n ranges over integer literals (n ∈ Num).

For the sake of simplicity we have not included booleans in the language,
thus giving the conditions of if and while statements in terms of arithmetic
expressions.

2.2. Big-step semantics

The semantics we present for this language is completely standard [9]. The
meaning of both expressions and statements is given relative to a state s ∈
State = Var → Z, a mapping from variables to integer values which contains
the current value of each variable.

The semantics of expressions is given by an evaluation function E : Exp →
State→ Z defined by induction on the structure of expressions:

E [[n]] s = N [[n]]

E [[x]] s = s x

E [[e1 + e2]] s = E [[e1]] s+ E [[e2]] s

where N : Num → Z is a function that associates an integer value to each
integer literal.

For statements, we define a big-step semantics whose transition relation is
written as 〈S, s〉 ⇓ s′, meaning that the evaluation of a statement S in an initial
state s terminates with a final state s′. The definition of the transition relation
is shown in Figure 1.

According to the semantics, the condition of an if statement is true when
it evaluates to zero, and false otherwise. The same happens with the condition
of a while.

3

〈x := e, s〉 ⇓ s[x 7→ E [[e]] s] 〈skip, s〉 ⇓ s

〈S1, s〉 ⇓ s′ 〈S2, s
′〉 ⇓ s′′

〈S1;S2, s〉 ⇓ s′′

E [[e]] s = 0 〈S1, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′
E [[e]] s 6= 0 〈S2, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′

E [[e]] s = 0 〈S, s〉 ⇓ s′ 〈while e do S, s′〉 ⇓ s′′

〈while e do S, s〉 ⇓ s′′
E [[e]] s 6= 0

〈while e do S, s〉 ⇓ s

Figure 1: Big-step semantics of statements

2.3. Security Type System

We assume that each variable has associated a security level, which states
the degree of confidentiality of the values it stores. A type environment Γ :
Var → SType maps each variable to a security type. Our language is flow
insensitive in the sense that the security level of each variable does not changed
during program execution.

For simplicity, in this paper we consider just two security levels, low and
high, corresponding to public and confidential data, respectively, but the whole
development can be easily generalized to a lattice of security levels ordered
by their degree of confidentiality. As usual low ≤ high. Instead of Γ(x) = low
(high), we will simply write xL (xH) to mean a variable with low (high) security
level and refer to it as a low (high) variable.

Noninterference is a property on programs that guarantees the absence of
illicit information flows during execution. A program satisfies this security prop-
erty when the final value of the low variables is not influenced by a variation
of the initial value of the high variables. The property can be formulated as
a semantic condition on programs. Let us say that two states s and s′ are
L-equivalent, written s ∼=L s′, when they coincide in the low variables, i.e.,
s xL = s′ xL for every low variable xL ∈ Var. In other words, L-equivalent
states are indistinguishable to a low observer (i.e. to an observer that can only
inspect low variables).

Definition 1 (Noninterference source language). A program S ∈ Stm is
noninterfering when, for any pair of L-equivalent initial states, if the ex-
ecution of S starting on each of these states terminates, then it does so in
L-equivalent final states:

NIS(S)
df
= ∀si, s′i. si ∼=L s

′
i ∧ 〈S, si〉 ⇓ sf ∧ 〈S, s′i〉 ⇓ s′f =⇒ sf ∼=L s

′
f

Nowadays it is well-known that this property can be enforced statically by
the definition of an information-flow type system in which security levels are

4

Expressions

` e : high
expH

xH /∈ Vars(e)

` e : low
expL

Statements

` e : low

[low] ` xL := e
assL

[pc] ` xH := e
assH

[pc] ` skip
skip

[pc] ` S1 [pc] ` S2

[pc] ` S1;S2

seq

` e : pc [pc] ` S1 [pc] ` S2

[pc] ` if e then S1 else S2

if

` e : pc [pc] ` S
[pc] ` while e do S

while
[high] ` S
[low] ` S

sub

Figure 2: Security Type System with subsumption (Source Language)

used as types and referred to as security types. This started with the work of
Volpano et al. [4, 10]. Figures 2 and 3 present two alternative security type
systems for our source language. The difference between them is that the system
in Figure 3 is syntax-directed.

Expressions. For typing expressions in the system of Figure 2 we use a judge-
ment of the form ` e : st, where st ∈ {low , high}. Rule expH states that any
expression can have type high. On the contrary, rule expL specifies that the
only expressions that can have type low are those that do not contain high
variables.

The type system for expressions shown in Figure 3 is syntax-directed. It
uses a judgement of the form `sd e : st. According to this system, the security
type of an expression is the maximum of the security types of its variables. We
denote by max st st′ the maximum of two security types st and st′. Integer
numerals are considered public data.

Statements. The goal of secure typing for statements is to prevent improper
information flows at program execution. Information flow can appear in two
forms: explicit or implicit. An explicit flow is observed when confidential data
are copied to public variables. For example, the following assignment is not
allowed because the value of a high variable is copied to a low variable.

yL := xH + 1

5

Expressions

`sd n : low `sd xL : low `sd xH : high

`sd e : st `sd e′ : st′

`sd e+ e′ : max st st′

Statements

` e : st

[high] `sd xH := e
assHsd

` e : low

[low] `sd xL := e
assLsd

[high] `sd skip
skipsd

[pc1] `sd S1 [pc2] `sd S2

[min pc1 pc2] `sd S1;S2

seqsd

` e : st [pc1] `sd S1 [pc2] `sd S2 st ≤ min pc1 pc2

[min pc1 pc2] `sd if e then S1 else S2

ifsd

` e : st [pc] `sd S st ≤ pc
[pc] `sd while e do S

whilesd

Figure 3: Syntax-directed Security Type System (Source Language)

On the other hand, an assignment like the following is authorized, since copying
the content of a low variable to high variable does not represent a security
violation.

xH := yL

Implicit information flows arise from the control structure of the program. The
following is an example of an insecure program where an implicit flow occurs:

if xH then yL := 1 else skip

The reason for being insecure is because by observing the value of the low
variable yL on different executions we can infer information about the value of
the high variable xH . This is a consequence of the assignment of a low variable
in a branch of a conditional upon a high variable. Due to situations like this it
is necessary to keep track of the security level of the program counter in order
to know the security level of the context in which a sentence occurs. On the
other hand, a program like this:

if yL + 2 then zL := zL + 1 else xH := xH − 1

is accepted because the final value of the public variable yL only depends on the
initial value of the yL and zL.

The type system for statements shown in Figure 2 is based on similar systems
given in [4, 3]. In that system, the typing judgement has the form [pc] ` S and

6

means that statement S is typable in the security context pc. Observe that
the system includes a subsumption rule (sub) which states that if a statement
is typeable in a high context then it is also typeable in low context. As a
consequence of this rule the system is not syntax-directed.

We then reformulate the type system to turn it syntax-directed. This gives
rise to the system shown in Figure 3. The typing judgement in this new system
has the form [pc] `sd S. Our interest in having this other formulation of the type
system is due to an important property of the syntax-directed system, namely
that the last rule in every derivation of [pc] `sd S is uniquely determined by
pc and S. This property makes this system particularly appropriate to to be
considered for the implementation.

Rule assHsd states that assignments to high variables need to be performed
in high contexts. In this type system a high context does not restrict typing,
since by other rules (mainly those for conditional and loop) a code with high
context can be part of any typable code. On the other hand, rule assLsd states
that assignments to low variables can only be done in low contexts. Explicit
flows are prevented by this rule due to the restriction to the expression to be
low. The rule ifsd (whilesd) imposes a restriction between the security level of
the condition and the branches of the conditional (the body of the iteration).
As a consequence, if the condition is high then the branches of the conditional
(body of the while) must type in high contexts. This restriction in conjunction
with that on assignments to low variables prevent implicit flows.

The following theorem establishes the relationship between both type sys-
tems.

Theorem 1. For every e ∈ Exp, S ∈ Stm, and st, pc ∈ SType:

(i) If `sd e : st then ` e : st.

(ii) If ` e : st then there exists st′ such that `sd e : st′ and st′ ≤ st.

(iii) If [pc] `sd S then [pc] ` S.

(iv) If [pc] ` S then there exists pc′ such that [pc′] `sd S and pc ≤ pc′.

Proof. See Appendix A.

A desirable property for the security type system is type soundness, which
means that every typable statement satisfies noninterference.

Theorem 2 (Type soundness). For every S ∈ Stm, si, s
′
i, sf , s

′
f , pc ∈ SType,

[pc] `sd S ∧ si ∼=L s
′
i ∧ 〈S, si〉 ⇓ sf ∧ 〈S, s′i〉 ⇓ s′f =⇒ sf ∼=L s

′
f

2.4. Implementation

Following the approach of Sheard [11] and Pasalic and Linger [12], we im-
plement the security type system in Haskell by encoding the typing judgements
as GADTs. The constructors of the GADT then encode the typing rules. A

7

value of the GADT thus represents a derivation of the encoded judgement. A
nice property of this encoding is that, the security property that is enforced by
the type system of the object language (our source language) results checked by
the type system of the host language (Haskell). This is a technique widely used
nowadays.

Generalized Algebraic Data Types (GADTs) [13] are a generalization of the
ordinary algebraic datatypes available in functional languages such as Haskell,
ML or O’Caml. We explain the features that GADTs incorporate while showing
the encoding of the type judgement for the arithmetic expressions of our lan-
guage. Let us start considering the datatype definition of the abstract syntax
for expressions in Haskell:

data Exp = IntLit Int | Var V | Add Exp Exp

where V is the type of variable names. The first ingredient that GADTs intro-
duce is an alternative syntax for datatype declarations, where an explicit type
signature is given for every data constructor. So, using GADT syntax we can
define Exp as:

data Exp where

IntLit :: Int → Exp

Var :: V → Exp

Add :: Exp → Exp → Exp

The second feature that GADTs incorporate is even more important. GADTs
remove the restriction present in parameterized algebraic datatypes by means of
which the return type of every data constructor must be the same polymorphic
instance of the type constructor being defined (i.e. the type constructor applied
to exactly the same type variables as in the left-hand side of the datatype
definition). In a GADT, the return type of the data constructors continues
being an application of the same type constructor that is being defined, but, in
contrast to standard datatype definitions, its arguments can be arbitrary. This
is the essential feature that makes it possible to encode the type judgements
as GADTs, together with the fact that the encoded type systems are syntax-
directed and therefore type judgements reflect the structure of abstract syntax
definitions.

We represent the type system for expressions as a GADT Exp st, similar to
the one above for the abstract syntax, but with the addition of a type parameter
st that denotes the security type of the encoded expression. The encoding is
such that, the judgement ` e : st in our formal type system corresponds to the
typing judgement e :: Exp st in Haskell. We represent the security types low
and high in Haskell as empty types (i.e. datatypes with no constructors):

data Low

data High

The reason for using empty types is because we are only interested in computing
with them at the type level. In fact, security types are only necessary to perform

8

the static verification of the noninterference property on programs. They are
not necessary at runtime.

The GADT for expressions is then the following:

data Exp st where

IntLit :: Int → Exp Low

VarL :: VL → Exp Low

VarH :: VH → Exp High

Add :: Exp st → Exp st’ → Exp (Max st st’)

where VL and VH are types for identifiers of low and high variables, respectively.
The definition of disjoint sets for low and high variables (and consequently the
definition of a constructor to each case) simplifies the implementation of the
language, avoiding the necessity of supplying a typing environment with the
security type of each variable. Notice that a separate treatment of each kind of
variable had been already given in the definition of the formal type system.

In the encoding, the maximun of two security types is computed by means of
the following type level function (called a type family [14] in Haskell’s jargon):

type family Max st st’ :: ∗
type instance Max Low x = x

type instance Max High x = High

To model statements we define a GADT that is also parametrized by a
security type, but in this case it represents the security level of the context in
which a statement is executed.

data Stm pc where

AssH :: VH → Exp st → Stm High

AssL :: VL → Exp Low → Stm Low

Skip :: Stm High

Seq :: Stm pc → Stm pc’ → Stm (Min pc pc’)

If :: LEq st (Min pc pc’)

⇒ Exp st → Stm pc → Stm pc’ → Stm (Min pc pc’)

While :: LEq st pc

⇒ Exp st → Stm pc → Stm pc

Each constructor corresponds to a rule of the type system shown in Figure 3.
Now the typing judgement stm :: Stm pc in Haskell corresponds to the judge-
ment [pc] `sd S in the formal type system. It is worth noting that since Stm pc

encodes the typing rules, it is only possible to write terms that correspond to se-
cure programs. Insecure programs will be rejected by Haskell’s compiler because
they correspond to ill-typed terms.

The minimum of two security types is computed by means of the following
type level function:

type family Min st st’ :: ∗
type instance Min Low x = Low

type instance Min High x = x

9

The class LEq is defined for modelling at type level the condition pc ≤ pc′

that is used in the typing rules for conditional and loop. This is a class with no
methods.

class LEq a b

instance LEq Low b

instance LEq High High

Having this class it is not necessary to provide a proof of the inequality be-
tween two types. If the condition holds for given two types, the selection of the
appropriate instance will be chosen by Haskell’s type system.

3. Target Language

The target language of the compiler is a simple machine code that runs on
a stack abstract machine in the style of the presented in [9]. In this section
we describe its syntax and operational semantics and define a type system that
enforces noninterference.

3.1. Syntax

The instructions of the low-level language are given by the following abstract
syntax:

c ::= push n pushes the value n on top of the stack
| add addition operation
| fetch x pushes the value of variable x onto the stack
| store x stores the top of the stack in variable x
| noop no operation
| c1 ; c2 code sequence
| branch (c1, c2) conditional
| loop (c1, c2) looping

where c ∈ Code, x ∈ Var and n ∈ Num. Like the high-level language, this
language also manipulates program variables that have associated a security
level. As usual in this kind of low-level languages, values are placed in an
operand stack in order to be used by operations.

3.2. Operational semantics

A code c is executed on an abstract machine with configurations of the form
〈c, σ, s〉 or (σ, s), where σ is an evaluation stack and s ∈ State is a state that
associates values to variables. The operational semantics is given by a transition
relation between configurations that specifies an individual execution step. The
transition relation is of the form 〈c, σ, s〉 B γ, where γ may be either a new
configuration 〈c′, σ′, s′〉, expressing that remaining execution steps still need to
be performed, or a final configuration (σ′, s′), expressing that the execution of c
terminates in one step. As usual, we write 〈c, σ, s〉 B∗ γ to indicate that there

10

〈push n, σ, s〉 B (N [[n]] : σ, s) 〈add, z1 : z2 : σ, s〉 B ((z1 + z2) : σ, s)

〈fetch x, σ, s〉 B ((s x) : σ, s) 〈store x, z : σ, s〉 B (σ, s[x 7→ z])

〈noop, σ, s〉 B (σ, s)

〈c1, σ, s〉 B (σ′, s′)

〈c1 ; c2, σ, s〉 B 〈c2, σ′, s′〉
〈c1, σ, s〉 B 〈c′, σ′, s′〉

〈c1 ; c2, σ, s〉 B 〈c′ ; c2, σ′, s′〉

z = 0

〈branch (c1, c2), z : σ, s〉 B 〈c1, σ, s〉
z 6= 0

〈branch (c1, c2), z : σ, s〉 B 〈c2, σ, s〉

〈loop (c1, c2), σ, s〉 B 〈c1 ; branch (c2 ; loop (c1, c2), noop), σ, s〉

Figure 4: Operational Semantics of the Target Language

is a finite number of steps in the execution from 〈c, σ, s〉 to γ. The operational
semantics of the language is shown in Figure 4.

We define a meaning relation

〈c, s〉 ↓ s′ iff 〈c, ε, s〉 B∗ (σ′, s′)

which states that a given code c, and states s and s′ are in the relation whenever
the execution of c starting in s and the empty stack ε terminates with state s′.
It can be proved that this is in fact a (partial) function as our semantics is
deterministic. Based on this relation we can define what does it mean for a
low-level program to be noninterfering.

Definition 2 (Noninterference Target Language).

NIT(c)
df
= ∀si, s′i. si ∼=L s

′
i ∧ 〈c, si〉 ↓ sf ∧ 〈c, s′i〉 ↓ s′f =⇒ sf ∼=L s

′
f

3.3. Security Type System

The security type system of the target language is shown in Figure 5. It
is defined in terms of a transition relation that relates a program code with
the security level of the program counter and the state of the stack type (stack
of security types) before and after the execution of that code. The typing
judgement is then of the form ls ` c : pc; ls′, where ls and ls′ are stack types.
This judgement states that a program c is typable when, starting in the security
environment given by the stack type ls and with program counter pc, it ends
up with stack type ls′. This type system is syntax-directed.

Like for the high-level language, this type system was designed in order to
prevent explicit and implicit illegal flows. Rule storeL, for example, prevents
explicit flows by requiring that the value to be stored in a variable low has
also security level low , while the requirement on the context (which must be
low) prevents implicit flows. Rules branch and loop also take care of implicit

11

push ls ` push n : high ; low :: ls

add st1 :: st2 :: ls ` add : high ; max st1 st2 :: ls

fetchL ls ` fetch xL : high ; low :: ls

fetchH ls ` fetch xH : high ; high :: ls

storeL low :: ls ` store xL : low ; ls

storeH st :: ls ` store xH : high ; ls

noop ls ` noop : high ; ls

cseq
ls ` c1 : pc1 ; ls′ ls′ ` c2 : pc2 ; ls′′

ls ` c1 ; c2 : min pc1 pc2 ; ls′′

branch
ls ` c1 : pc1 ; ls ls ` c2 : pc2 ; ls st ≤ min pc1 pc2

st :: ls ` branch (c1, c2) : min pc1 pc2 ; ls

loop
ls ` c1 : pc1 ; st :: ls′ ls′ ` c2 : pc2 ; ls′ st ≤ pc2

ls ` loop (c1, c2) : min pc1 pc2 ; ls′

Figure 5: Security Type System for the Target Language

flows. Rule branch, for example, requires that the security level of the program
counters of the branches must be at least the security level of the value at the
top of the stack (which is the value used to choose the branch to continue).
Something similar happens with the loop construct in rule loop.

We note that this type system rejects some secure programs. For example,
the following program is not accepted:

push 1; branch (push 0, noop)

because of the restriction of rule branch, which states that the branches of a
conditional cannot change the stack of security types. In this case, the branch
push 0, adds an element to the stack. If we decided to remove such a restriction,
we should be careful that a code like the following one, clearly insecure, is
rejected by the type system:

fetch xH ; branch (push 1, push 2); store xL

However, without the restriction of rule branch this is a situation not easy
to detect because the instruction store xL occurs outside the conditional and
depends on the code that comes before it. This problem is due to the way in
which the storage of a value in a variable is performed in this language. In fact,
at least two actions, rather than one, are required: one for allocating the value

12

(to be stored in the variable) in the stack, and another for moving that value to
the variable.

A similar situation happens with rule loop. It rejects any loop loop (c1, c2)
whose body c2 changes the stack of security types.

In Section 4, we show that the programs (secure or not) that are rejected by
these restrictions of the type system are not the ones generated by compilation.

The security type system for the low-level language is also sound.

Theorem 3 (Type soundness). For every c ∈ Code, ls, ls′, si, s
′
i, sf , s

′
f , pc,

ls ` c : pc; ls′ ∧ si ∼=L s
′
i ∧ 〈c, si〉 ↓ sf ∧ 〈c, s′i〉 ↓ s′f =⇒ sf ∼=L s

′
f

3.4. Implementation

We use type-level lists to represent the stacks of security types. Such lists
can be defined by introducing the following empty types:

data Empty

data st :#: l

The type Empty represents the empty stack whereas a type st :#: l represents
a stack with top element st and tail stack l.

The low-level language is encoded as a GADT that is parameterized by the
security level of the context and the stacks of security types before and after
the execution of the code.

data Code ls pc ls’ where

Push :: Int → Code ls High (Low :#: ls)

AddOp :: Code (st1 :#: st2 :#: ls) High (Max st2 st1 :#: ls)

FetchL :: VL → Code ls High (Low :#: ls)

FetchH :: VH → Code ls High (High :#: ls)

StoreL :: VL → Code (Low :#: ls) Low ls

StoreH :: VH → Code (pc :#: ls) High ls

Noop :: Code ls High ls

CSeq :: Code ls pc1 ls’ → Code ls’ pc2 ls’’

→ Code ls (Min pc1 pc2) ls’’

Branch :: LEq pc (Min pc1 pc2)

⇒ Code ls pc1 ls → Code ls pc2 ls

→ Code (pc :#: ls) (Min pc1 pc2) ls

Loop :: LEq st pc2

⇒ Code ls pc1 (st :#: ls’) → CodeS ls’ pc2 ls’

→ Code ls (Min pc1 pc2) ls’

The typing judgement c :: Code ls pc ls’ in Haskell corresponds to the
judgement ls ` c : pc; ls′ in the formal type system.

13

Expressions

Ce[n] = push n

Ce[x] = fetch x

Ce[e1 + e2] = Ce[e1] ;Ce[e2] ; add

Sentences

CS [x := e] = Ce[e] ; store x

CS [skip] = noop

CS [S1;S2] = CS [S1] ;CS [S2]

CS [if e then S1 else S2]

= Ce[e] ; branch (CS [S1],CS [S2])

CS [while e do S] = loop (Ce[e],CS [S])

Figure 6: Compilation functions

4. Compilation

The compiler is a function that converts terms of the source language into
terms of the target language. Since the terms of our source language are of
two syntax categories, we have to define two compilation functions, one for
expressions (Ce : Exp → Code) and the other for commands (CS : Stm →
Code). Figure 6 shows the definition of both functions.

It is not difficult to prove that this compiler is correct with respect to the
semantics of the source and target languages.

Theorem 4 (Compiler correctness). For any e ∈ Exp, S ∈ Stm, and state
s it holds that:

i) 〈Ce[e], ε, s〉 B∗ (E [[e]]s : ε, s)

ii) if 〈S, s〉 ⇓ s′ then 〈CS [S], ε, s〉 B∗ (ε, s′)

However, in this paper we are especially interested in another property of the
compiler, namely the preservation of the noninterference by compilation. This
means that, if we start with a noninterfering program in the source language,
then the compiler returns a noninterfering program in the target language. This
property can be expressed semantically.

Theorem 5 (Security preservation). For any e ∈ Exp and S ∈ Stm,

i) NIT(Ce[e])

ii) if NIS(S) then NIT(CS [S])

However, our interest in this paper is to establish this property in terms of
the type systems.

Theorem 6 (Type-based security preservation). For any e ∈ Exp and
S ∈ Stm,

14

i) If `sd e : st then ls ` Ce[e] : high ; st :: ls

ii) If [pc] `sd S then ls ` CS [S] : pc; ls

Proof. By induction on the structure of expressions and statements. See Ap-
pendix B.

4.1. Implementation

Both Ce and CS can be easily implemented in Haskell.

compE :: Exp st → Code ls High (st :#: ls)

compE (IntLit n) = Push n

compE (VarL x) = FetchL x

compE (VarH x) = FetchH x

compE (Add e1 e2) = CSeq (CSeq (compE e1) (compE e2)) Addop

compS :: Stm pc → Code ls pc ls

compS (AssL x e) = CSeq (compE e) (StoreL x)

compS (AssH x e) = CSeq (compE e) (StoreH x)

compS Skip = Noop

compS (Seq s1 s2) = CSeq (compS s1) (compS s2)

compS (If e s1 s2) = CSeq (compE e) (Branch (compC s1) (compC s2))

comps (While e s) = Loop (compE e) (compS s)

We should not forget that we have represented as GADTs not only the
abstract syntax of the languages but actually their secure type systems. There-
fore, these translation functions turn out to be more than compilation functions.
They are actually the Haskell representation of the proof terms of Theorem 6!
In fact, observe that the type of these functions is exactly the Haskell encoding
of the properties i) and ii) in the Theorem. In other words, when writing these
functions we are actually proving this Theorem and the verification that the
Theorem is valid is performed by Haskell type system. As we mentioned above,
both i) and ii) are proved by structural induction. The different cases of the
translation functions are actually the encoding in Haskell of the cases of those
inductive proofs.

This is a common situation in languages with dependent types, like Agda [15],
Coq [16], or Idris [17], but it was not so in languages like Haskell. However, with
the increasing incorporation of new features to Haskell, and in particular, to its
reference compiler (GHC), this sort of type level programming applications are
becoming more frequent and feasible (see e.g. [18]).

5. Related Work

There has been a lot of work on information flow analysis, pioneered by Bell
and LaPadula [1], and continued with the work of Denning [19]. Noninterference
was introduced by Goguen and Meseguer [2]. One of the approaches to ensure
this security property has been based on the use of type system [19, 3]. This is

15

the approach we followed in this paper. Most of the works on type systems for
noninterference concentrated on high-level languages (e.g. [4, 3, 5]), but there
are also some works that studied security type systems for low-level languages
(e.g. [6, 7, 8]).

In this paper we used a limited form of dependently typed programming
available in Haskell and in particular in the GHC compiler by the use of some
extensions. The frontiers of this discipline of programming in Haskell is nowa-
days a subject of discussion and experimentation (see e.g. [20, 18]).

Guillemette and Monnier [21] wrote a type-preserving compiler for System F
in Haskell. Their compiler is composed by phases so that Haskell’s type checker
can mechanically verify the typing preservation of each phase.

An example of the use of GADTs to ensure static properties of programs is
presented by Sheard [11]. He encoded in Omega a simple While language that
satisfies two semantic properties: scoping and type safety.

These works are similar to ours in the sense that they prove that a compiler
preserves the types of object programs, or that a language satisfies some static
property. However, none of them are concerned with proving the preservation
of a security property of programs.

There are some works on the use of dependent types for developing type-
preserving compilers. Chlipala [22], for example, developed a certified compiler
from the simply-typed lambda calculus to an assembly language using the proof
assistant Coq. He uses dependent types in the representation of the target
language of his compiler to ensure, like we did for our object languages, that
only terms satisfying the object language typing are representable.

There are many works on certified compilers. One is the work by Leroy [23]
who developed a certified compiler (CompCert) for a subset of C in the proof
assistant Coq. Another is the work by Barthe, Naumann and Rezk [24] who
wrote a compiler for Java that preserves information flow typing, such that any
typable program is compiled into a program that will be accepted by a bytecode
verifier which enforces noninterference.

6. Conclusion

We presented a compiler written in Haskell that preserves the security prop-
erty of noninterference. The compiler takes source code from an imperative
high-level language and returns code of a low-level language that runs in a
stack-based abstract machine. For each of the languages we defined the prop-
erty of noninterference by means of a security type system. Those type systems
were represented in Haskell by means of GADTs combined with type families
for computing with security types at the type level and a multi-parameter type
class for comparing security types. This encoding guarantees that we can only
write terms (of the corresponding GADTs) that are the representation of secure
programs.

Using this approach the type of the compiler corresponds exactly to the
formulation of the property that noninterference is preserved by compilation.

16

The definition of the compiler function itself then corresponds to the proof term
that proves that property. The rest of the work (i.e. the verification that the
function is indeed a proof of that property) is done by Haskell’s type system.

We are completely aware we are working in an unsound logic and therefore
we must be very careful when we encode proofs in such a logic. The unsoundness
of the logic comes from the fact that in Haskell all types are inhabited (they
have at least the undefined value). In our development we maintained ourselves
in a terminating subsubset of Haskell.

Although the target language of the compiler is simple and semi-structured,
we think that a compiler to a more realistic low-level language (for example,
with goto) can be constructed applying the same ideas. We are currently doing
some experiments in this line using Agda [15], but we do not discard to try
with Haskell as well. The decision of using Agda for developing a more realistic
compiler is because the complexity of the required program properties increase
and then it becomes difficult to express them in Haskell.

References

[1] D. E. Bell, L. J. LaPadula, Secure Computer Systems: Unified Exposition
and Multics Interpretation, Tech. Rep. MTR-2997, The MITRE Corp.,
1975.

[2] J. A. Goguen, J. Meseguer, Security Policies and Security Models, in: Sym-
posium on Security and Privacy, IEEE Computer Society Press, 11–20,
1982.

[3] A. Sabelfeld, A. C. Myers, Language-Based Information-Flow Security,
IEEE J. Selected Areas in Communications 21 (1) (2003) 5–19.

[4] D. Volpano, C. Irvine, G. Smith, A sound type system for secure flow
analysis, J. Comput. Secur. 4 (2-3) (1996) 167–187.

[5] A. Banerjee, D. A. Naumann, Stack-based access control and secure infor-
mation flow, J. Funct. Program. 15 (2) (2005) 131–177.

[6] G. Barthe, T. Rezk, A. Basu, Security types preserving compilation, Com-
put. Lang. Syst. Struct. 33 (2) (2007) 35–59.

[7] R. Medel, A. B. Compagnoni, E. Bonelli, A Typed Assembly Language for
Non-interference., in: M. Coppo, E. Lodi, G. M. Pinna (Eds.), ICTCS, vol.
3701 of Lecture Notes in Computer Science, Springer, 360–374, 2005.

[8] A. Saabas, T. Uustalu, Compositional Type Systems for Stack-based Low-
level Languages, in: Proceedings of the 12th Computing: The Australasian
Theroy Symposium - Volume 51, CATS ’06, Australian Computer Society,
Inc., 27–39, 2006.

[9] H. R. Nielson, F. Nielson, Semantics with Applications: A Formal Intro-
duction, John Wiley & Sons, Inc., New York, NY, USA, 1992.

17

[10] D. M. Volpano, G. Smith, A Type-Based Approach to Program Security,
in: Proceedings of the 7th International Joint Conference CAAP/FASE on
Theory and Practice of Software Development, TAPSOFT ’97, Springer-
Verlag, London, UK, 607–621, 1997.

[11] T. Sheard, Languages of the Future, SIGPLAN Not. 39 (12) (2004) 119–
132.

[12] E. Pasalic, N. Linger, Meta-programming with Typed Object-Language
Representations, in: G. Karsai, E. Visser (Eds.), Generative Programming
and Component Engineering: Third International Conference, GPCE 2004,
Vancouver, Canada, October 24-28, 2004. Proceedings, vol. 3286 of Lecture
Notes in Computer Science, Springer, 136–167, 2004.

[13] S. Peyton Jones, D. Vytiniotis, S. Weirich, G. Washburn, Simple
Unification-based Type Inference for GADTs, in: 11th International Con-
ference on Functional Programming, ACM, 50–61, 2006.

[14] T. Schrijvers, S. Peyton Jones, M. Chakravarty, M. Sulzmann, Type Check-
ing with Open Type Functions, SIGPLAN Not. 43 (9) (2008) 51–62, ISSN
0362-1340.

[15] U. Norell, Dependently Typed Programming in Agda, in: Advanced Func-
tional Programming, vol. 5832 of Lecture Notes in Computer Science,
Springer, 230–266, 2008.

[16] Y. Bertot, P. Casteran, G. Huet, C. Paulin-Mohring, Interactive theorem
proving and program development : Coq’Art : the calculus of inductive
constructions, Texts in Theoretical Computer Science, Springer, Berlin,
New York, 2004.

[17] E. Brady, Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation, J. Funct. Program. 23 (5) (2013) 552–
593.

[18] S. Lindley, C. McBride, Hasochism: the pleasure and pain of dependently
typed haskell programming, in: C. Shan (Ed.), Proceedings of the 2013
ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September
23-24, 2013, ACM, 81–92, 2013.

[19] D. E. Denning, A Lattice Model of Secure Information Flow, Commun.
ACM 19 (5) (1976) 236–243.

[20] R. A. Eisenberg, S. Weirich, Dependently Typed Programming with Sin-
gletons, in: Proceedings of the 2012 Haskell Symposium, Haskell ’12, ACM,
New York, NY, USA, 117–130, 2012.

[21] L.-J. Guillemette, S. Monnier, A type-preserving compiler in Haskell, SIG-
PLAN Not. 43 (9) (2008) 75–86.

18

[22] A. Chlipala, A certified type-preserving compiler from lambda calculus to
assembly language, SIGPLAN Not. 42 (6) (2007) 54–65.

[23] X. Leroy, A Formally Verified Compiler Back-end, J. Autom. Reason. 43 (4)
(2009) 363–446.

[24] G. Barthe, T. Rezk, D. A. Naumann, Deriving an Information Flow Checker
and Certifying Compiler for Java, in: IEEE Symposium on Security and
Privacy, IEEE Computer Society, 230–242, 2006.

Appendix A. Proof of Theorem 1

We include here the proof of properties (iii) and (iv) only. Properties (i)
and (ii) can be proved similarly by induction.

Property (iii). If [pc] `sd S then [pc] ` S.

Proof. The proof is by induction on the structure of statements. The base
cases corresponding to assignment of low and high variables and skip are imme-
diate.

• Case S1;S2

If S1;S2 is typable in the syntax-directed type system, then by rule seqsd

we have that:

– [pc1] `sd S1

– [pc2] `sd S2

– [min pc1 pc2] `sd S1;S2

The proof then continues by case analysis on pc1 and pc2.

– When pc1 = pc2, we use rule seq and the induction hyphotesis (hyp)
to conclude.

[pc1] `sd S1

[pc1] ` S1

hyp
[pc1] `sd S2

[pc1] ` S1

hyp

[pc1] ` S1;S2

seq

– When pc1 = low and pc2 = high, we have the following derivation

[low] `sd S1

[low] ` S1

hyp

[high] `sd S2

[high] ` S2

hyp

[low] ` S2

sub

[low] ` S1;S2

seq

– When pc1 = high and pc2 = low the proof is similar.

19

• Case while e do S

If while e do S is typable, then the rule whilesd is used and we have
that:

– `sd e : st

– [pc] `sd S
– st ≤ pc
– [pc] `sd while e do S

The proof then continues by case analysis on st and pc.

– When st = pc, we have the following derivation:

` e : pc

[pc] `sd S
[pc] ` S

hyp

[pc] ` while e do S
while

where ` e : pc is obtained by part (i) of this theorem from `sd e : pc.

– Since st ≤ pc, the other case corresponds to st = low and pc = high.
Then we have the following derivation:

` e : high
expH

[high] `sd S
[high] ` S

hyp

[high] ` while e do S
while

• case if e then S1 else S2

When if e then S1 else S2 is typable, the rule ifsd is used and we have
that:

– `sd e : st

– [pc1] `sd S1

– [pc2] `sd S2

– st ≤ min pc1 pc2

– [min pc1 pc2] `sd if e then S1 else S2

The proof then continues by case analysis on st, pc1 and pc2.

– The case where st = pc1 = pc2 = low follows by application of
induction hypothesis:

` e : low

[low] `sd S1

[low] ` S1

hyp
[low] `sd S2

[low] ` S2

hyp

[low] ` if e then S1 else S2

if

where ` e : low is obtained by part (i) of this theorem from `sd e :
low .

20

– When st = pc1 = low and pc2 = high we have the following deriva-
tion:

` e : low

[low] `sd S1

[low] ` S1

hyp

[high] `sd S2

[high] ` S2

[low] ` S2

sub

hyp

[low] ` if e then S1 else S2

if

where ` e : low is obtained by part (i) of this theorem from `sd e :
low .

– The case where st = pc2 = low and pc1 = high is similar.

– When st = low and pc1 = pc2 = high, we have that:

` e : high
expH

[high] `sd S1

[high] ` S1

hyp
[high] `sd S2

[high] ` S2

hyp

[high] ` if e then S1 else S2

if

– The case where st = pc1 = pc2 = high is similar to the previous one.

– The case st = high and pc1 = pc2 = low is impossible because it
contradicts the condition st ≤ min pc1 pc2.

Property (iv). If [pc] ` S then there exists pc′ such that [pc′] `sd S and pc ≤ pc′.

Proof. The proof is by induction on the typing derivation of [pc] ` S.

• When the last rule used in the derivation is assL, assH or skip the proof
is trivial.

• When the last rule used in the derivation is seq:

[pc] ` S1 [pc] ` S2

[pc] ` S1;S2

seq

we can apply induction hypothesis to the derivations of [pc] ` S1 and
[pc] ` S2, obtaining that [pc1] `sd S1 and [pc2] `sd S2 for some pc1 and
pc2 which satisfy the inequalities pc ≤ pc1 and pc ≤ pc2. Finally, we use
rule seqsd to conclude that:

[min pc1 pc2] `sd S1;S2

where pc ≤ min pc′ pc′′.

• When the last rule used in the derivation is while:

` e : pc [pc] ` S
[pc] ` while e do S

while

21

we can apply induction hypothesis to the derivation of [pc] ` S obtaining
[pc′] `sd S for some pc′ such pc ≤ pc′. On the other hand, by part (ii) of
the theorem we have that `sd st : e for some st such st ≤ pc. Therefore,
since st ≤ pc′, we can use the rule whilesd to conclude that:

[pc′] `sd while e do S

with pc ≤ pc′.

• When the last rule used in the derivation is if, the proof is analogous to
the previous case.

• When the last rule used in the derivation is sub:

[high] ` S
[low] ` S

sub

then we proceed by induction on the structure of S:

– The cases for assignment of low and high variables and ski are im-
mediate.

– Case S1;S2.

By applying rule seq we obtain that [high] ` S1 and [high] ` S2, and
by induction hypothesis we have that [high] `sd S1 and [high] `sd S2.
Finally, we use rule seqsd to conclude that [high] `sd S1;S2.

– Case while e do S.

By applying rule while we obtain that ` e : high and [high] ` S, and
by induction hypothesis we have that [high] `sd S. Now, by part (ii)
of the theorem we have that `sd st′ : e for some st′ ≤ high. Finally,
we use rule whilesd to conclude that [high] `sd while e do S.

– The case if e then S1 else S2 is analogous.

Appendix B. Proof of Theorem 6

Property (i). If `sd e : st then ls ` Ce[e] : high ; st :: ls.

Proof. The proof is by induction on the structure of expressions.

• Case n

We have that Ce[n] = push n and `sd n : low . Then, we use rule push to
conclude that ls ` push n : high ; low :: ls.

• Case e1 + e2

Recall that Ce[e1 + e2] = Ce[e1] ;Ce[e2] ; add. Since e1 + e2 is typable,
there exists st1 and st2 such that:

22

– `sd e1 : st1

– `sd e2 : st2

– `sd e1 + e2 : max st1 st2

By induction hypothesis we have that ls ` Ce[e1] : high ; st :: ls and
st :: ls ` Ce[e2] : high ; st′ :: st :: ls. Then, by using the rules cseq and
add we obtain ls ` Ce[e1] ;Ce[e2] ; add : high ; max st st′ :: ls, which
rewrites to ls ` Ce[e1 + e2] : high ; max st st′ :: ls by definition of Ce.

• The other cases are analogous.

Property (ii). If [pc] `sd S then ls ` CS [S] : pc; ls

Proof. The proof is by induction on the structure of statements.

• Case xL := e.

Since xL := e is typable we have that:

– `sd e : low

– [low] `sd xL := e

By using part (i) of the theorem we obtain that: ls ` Ce[e] : high ; low ::
ls. Then, we apply the following derivation:

ls ` Ce[e] : high ; low :: ls low :: ls ` store xL : low ; ls
storeL

ls ` Ce[e] ; store xL : low ; ls
cseq

Finally, by definition of CS the desired result follows.

• Case while e do S

Since while e do S is typable, there exist st and pc such that:

– `sd e : st

– st ≤ pc
– [pc] `sd S
– [pc] `sd while e do S

Using part (i) of the theorem we have that ls ` Ce[e] : high ; st :: ls and
by induction hypothesis we obtain that ls ` CS [S] : pc; ls.

Then, we can apply the following derivation:

ls ` Ce[e] : high ; st :: ls ls ` CS [S′] : pc; ls st ≤ pc
ls ` loop (Ce[e],CS [S′]) : pc; ls

loop

Finally, by definition of CS the desired result follows.

• The other cases are analogous.

23

